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Abstract

The general Lie algebra gln(C) is formulated as a Lie algebra of bivectors
which is a subalgebra of the geometric algebra Gn,n+1. The so-called spinor al-
gebra of C2, the language of the ubiquitous quantum mechanics, is formulated
in terms of the idempotents and nilpotents of geometric algebra G3. We start by
studying the Lie algebra gln(C) and extend these ideas to apply to higher dimen-
sional spin algebras.
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1 The general Lie algebra gln(C)
By the standard matrix basis Ω2

n,n of bivectors, we mean

Ω2
n,n = (a)T

(n)∧ (b)(n) =


a1 ∧b1 a1 ∧b2 . . . a1 ∧bn
a2 ∧b1 a2 ∧b2 . . . a2 ∧bn
. . . . . . . . . . . .
. . . . . . . . . . . .

an ∧b1 an ∧b2 . . . an ∧bn

 , (1)

where the basis vectors (a)(n) and (b)(n) form a Witt basis, satisfying

(a)T
(n) · (b)(n) = [1]n, (2)

for the identity n×n matrix [1]n.
The matrix Ω2

n,n spans a n2-dimensional linear space of bivectors, defined by the
same symbol,

Ω2
n,n = span{a∧b| a ∈ A n,b ∈ Bn}= {F| F = (a)(n)[F]∧ (b)T

(n)}
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where [F] is a real (or complex) n×n matrix, called the matrix of the bivector F. The
algebra Ωn,n is generated by taking all sums of geometric products of the elements of
Ω2

n,n and is an even subalgebra of the geometric algebra Gn,n. We also use the notation
Ωn,n+1 when studying the complex Lie algebra where the imaginary unit i is interpreted
to be the pseudoscalar element of the geometric algebra Gn,n+1.

Let K = (a)(n) ∧ (b)T
(n), then we find that [K] = [1]n is the identity matrix, and

F ·K = tr([F]) is the trace of the matrix [F] of F. By the rank of a bivector F ∈ F ,
we mean the highest positive integer k such that ∧kF ̸= 0. A bivector F is said to be
nonsingular if ∧nF =

(
det[F]

)
∧n K ̸= 0.

For two bivectors F,G ∈ Ωn,n, we find that

F ·G =
(
(a)(n)[F]∧ (b)T

(n)

)
·
(
(a)(n)[G]∧ (b)T

(n)

)
=
((

(a)(n)[F]∧ (b)T
(n)

)
· (a)(n)

)
·
(
[G]∧ (b)T

(n)

)
= tr

(
[F][G]

)
, (3)

F⊗G =
(
(a)(n)[F]∧ (b)T

(n)

)
⊗
(
(a)(n)[G]∧ (b)T

(n)

)
=
((

(a)(n)[F]∧ (b)T
(n)

)
· (a)(n)

)
∧
(
[G](b)T

(n)

)
+(a)(n)[G]∧

((
(a)(n)∧ [F](b)T

(n)

)
· (b)T

(n)

)
= (a)(n)∧

[
[F], [G]

]
(b)T

(n), (4)

where
[
[F], [G]

]
= [F][G]− [G][F] is the usual anticommutative bracket operation for

the matrices [F] and [G]. It follows that [F⊗G] =
[
[F], [G]

]
. For F∧G, we find that

F∧G = ∑
i< j

[
det

(
fii fi j
g ji g j j

)
+det

(
gii gi j
f ji f j j

)]
ai ∧bi ∧a j ∧b j. (5)

Other interesting formulas:

K · (F∧F) = 2
(
(F ·K)F− (a)(n)∧ [F]2(b)T

(n)

)
,

(K∧K) · (F∧F) = 2
(
(F ·K)2 −F ·F

)
,

F · (F∧F) = 2
(
(F ·F)F− (a)(n)∧ [F]3(b)T

(n)

)
,

and
(K∧F) · (F∧F) = 2

(
(F ·K)(F ·F)− tr([F]3)

)
.

The most general identity of this kind is

F · (G∧H) = (F ·G)H+(F ·H)G− (a)(n)∧
(
[H][F][G]+ [G][F][H]

)
(b)T

(n). (6)

We include a higher order identity,

K · (F∧F∧F) = 3(K ·F)F∧F−6
(
(a)(n)∧ [F]2(b)T

(n)

)
∧F,

2



from which an identity for (K∧K) · (F∧F∧F) can be easily established.
The method of proof of these identities is amply illustrated in the proof of (6) given

below. Noting that F · (a)(n) = (a)(n)[F], we find that

F · (G∧H) =
[(

F · (a)(n)
)
∧ (b)T

(n)

]
·
[
(a)(n)∧ [G](b)T

(n)∧ (a)(n)∧ [H](b)T
(n)

]
=
(
F · (a)(n)

)
·
[
[G](b)T

(n)∧H+G∧ [H](b)T
(n)]

= (F ·G)H+
[(

F · (a)(n)
)
·H

]
∧ [G](b)T

(n)+
[(

F · (a)(n)
)
·G

]
∧ [H](b)T

(n)+(F ·H)G

= (F ·G)H+(F ·H)G− (a)(n)
(
[H][F][G]+ [G][F][H]

)
(b)T

(n).

By using the above formulas, we find in general that

F = (F ·K)K− 1
2

F · (K∧K).

The bivector that represents the product of two matrices [F] and [G] is given by

(a)(n)[F][G]∧ (b)T
(n) =

1
2

(
F⊗G+(F ·K)G+(G ·K)F−K · (F∧G)

)
,

which can be used to calculate higher order matrix products.
Given a bivector F ∈ Ω2

n,n, we now calculate its inverse G = F−1. Since FG = 1, it
follows that

F ·G = 1, F⊗G = 0, and F∧G = 0.

Since F∧G = 0, it follows using identity (6) that

0 = F · (F∧G) = (F ·F)G+F−2(a)(n)∧ [F]2[G](b)T
(n),

or
F = 2(a)(n)∧ [F]2[G](b)T

(n)− (F ·F)G.

Solving this last equation for the matrix [G] = [F−1], we find that

[G] =
(

2[F]2 − (F ·F)[K]
)−1

[F] (7)

where, of course, [K] is the identity (n×n)-matrix.
The exponential function is key to relating Lie algebras to their corresponding Lie

groups. Here we establish a key identity. Let F,B ∈ Ω2
n,n. We have

e
t
2 FBe−

t
2 F = (a)(n)∧ et[F][B]e−t[F](b)T

(n). (8)

This important identity follows from the closely related identities

e
t
2 F(a)(n)e−

t
2 F = (a)(n)et[F], and e

t
2 F(b)T

(n)e
− t

2 F = e−t[F](b)T
(n), (9)

which are established by noting that the Taylor series expansion of both sides around
t = 0 agree for all powers of the expansion. Successively differentiating the identites
in (9), gives the useful identities

F(k)⊗ (a)(n) = (a)(n)[F]k, and F(k)⊗ (b)T
(n) = (−1)k[F]k(b)T

(n).

3



2 Linear algebra of bivectors
Classification schemes for a linear operator are usually built around the characteristic
and minimal polinomials of that operator. A modification of that scheme can used to
classify a bivector

F = (a)(n)[F]∧ (b)T
(n) ∈ Ω2

n,n,

defined by the matrix [F].
First, consider the bivector K = ∑n

i=1 ai∧bi of the identity matrix [1]n. We have the
following

Identity Form 2.1 For even n = 2k, the bivector K satisfies the minimal polynomial

K
k

∏
r=1

(K−2r)(K+2r), (10)

and for odd n = 2k+1, the bivector K satisfies the minimal polynomial

k

∏
r=0

(K−2r−1)(K+2r+1). (11)

Proof:
The proof proceeds by induction. Assuming that the theorem is true for n = k, we

prove that it is true for n = k+1 by showing that when the polynomial for n = k+1 is
divided by the two appropriate lower order polynomials, the remainder is zero.

�
The minimal polynomials of K for even and odd n are examples of interlacing polyno-
mials. Each higher even or odd order polynomials contain the zeros of the lower even
or odd order polynomials, respectively.

We now characterize index of nilpotency for nilpotens Nk of the form, for k < n,

Nk =
k

∑
r=1

ar ∧br+1 = (a)(n)


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . .
. . . . . . . . .
0 0 0 . . . 0

∧ (b)T
(n),

where there are k-one’s off the main diagonal. The matrix [N] has nilpotency of order
k+1 in-so-far as that [N]k+1 = 0. However, the nilpotency nil(Nk) of the bivector Nk
is considerably more complicated as the following theorem shows.

Nilpotent Form 2.2 The nilpotency of Nk is given by the recursive formula for k ≥ 1,

nil(N0) := nil(0) = 1, and nil(Nk) = nil(Nk−1)+
[k+1

2

]
. (12)

Proof: Assume by induction that the theorem is true for k. Then for k + 1, write
Nk+1 = Nk +ak+1bk+2 and calculate

N2
k+1 = N2

k +ak+1bk+2Nk +Nkak+1bk+2
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= N2
k +ak+1bk+2

(
Nk−1 +akbk+1

)
+
(
Nk−1 +akbk+1

)
ak+1bk+2

= N2
k +2

(
Nk−1ak+1 +bk+1 ∧ak+1ak

)
bk+2.

At this point the proof is incomplete... Values for which the nilpotency of Nk are
known are given in the Table below. The last two values for nil(N8) = 21 and nil(N9 =
26) were calculated with Mathematica, but by eliminating some of the higher order
terms in the expansions. Thus, they can be in error. The general proof is still an open
problem, so the general theorem is at this point only a conjecture.

�

N0 = 0 N1 N2 N3 N4 N5 N6 N7 N8 N9
nil(Nk) 1 2 3 5 7 10 13 17 21 26

Given a bivector F = (a)(n)[F]∧ (b)T
(n) ∈ Ω2

n,n, and an invertible matrix A, we see
from

F = (a)(n)[F]∧ (b)T
(n) = (a)(n)AA−1[F]A∧A−1(b)T

(n),

how the bivector is re-expressed in the new basis of Rn,n given by (a′)(n) = (a)(n)A
and (b′)T

(n) = A−1(b)T
(n). Of course, the new basis vectors (a′)T

(n) and (b′)(n) make up
a new Witt basis satisfying (2). From this it follows that we can apply all the usual
rules for changing the basis for a linear operator and still maintain the properties of
a Witt basis for the corresponding bivector basis of the algebra Ωn,n. In particular,
we can always find a prefered basis in which the matrix [F] of the bivector F consists
of Jordan blocks. Armed with the Theorems 2.1, and 2.2, above, we can efficiently
solve the corresponding eigenbivector problem for the bivector F by using the spectral
decomposition of the matrix [F] = ∑r

k=1[Jk] into the Jordan blocks [Jk].
Thus, suppose that the bivector F = ∑r

k=1 Jk, where the bivectors Jk correspond to
the Jordan blocks [Jk] will be commuting. We now study the structure of the bivector
J = Jk of a single block [Jk], from which the totality of the structure of F follows. We
first note that each Jordan block bivector J can itself be broken down in a commut-
ing sum of a nilpotent bivector N and a sub-identity block bivector K, J = λK+N.
Whereas the minimal polynomial of the matrix [F] has the form

φ(x) :=
r

∏
k=1

(x−λk)
mk ,

the corresponding minimal polynomial of the bivector F is more complicated, but can
still be constructed by using the knowledge of the minimal polynomial φ(x) of [F], and
the Jordan block structure of each [J] = λ [K]+ [N] for the bivector J = Jk.
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Bivector Minimal Polynomial Constraint
J = K2 +N1 J2(J2 −4) N1K2
K2 K2(K2

2 −4)
J = K3 +N2 (J2 −1)3(J2 −9) N2(K2

3 −1)
K3 (K2

3 −1)(K2
3 −9)

J = K4 +N1 J2(J2 −4)2(J2 −16) N1K4(K2
4 −4)

K4 K4(K2
4 −4)(K2

4 −16)
J = K4 +N2 J3(J2 −4)3(J2 −16) N2K4(K2

4 −4)
J = K4 +N3 J5(J2 −4)4(J2 −16) N3K4(K2

4 −4), N4
3K4

J = K5 +N2 (J2 −1)3(J2 −9)3(J2 −25) N2(K2
5 −1)(K2

5 −9)
K5 (K2

5 −1)(K2
5 −9)(K2

5 −25)
J = K5 +N3 (J2 −1)5(J2 −9)4(J2 −25) N3(K2

5 −1)(K2
5 −9)

J = K5 +N4 (J2 −1)7(J2 −9)7(J2 −25) N4(K2
5 −1)(K2

5 −9)
J = K6 +N2 J3(J2 −4)3(J2 −16)3(J2 −36) N2K6(K2

6 −4)(K2
6 −16)

K6 K6(K2
5 −4)(K2

6 −16)(K2
6 −36) N9

5K6, N16
7 K8

J = K6 +N3 J5(J2 −4)5(J2 −16)4(J2 −36) N3K6(K2
6 −4)(K2

6 −16)
J = K7 +N5 (J2 −1)10(J2 −9)10(J2 −25)10(J2 −49) N5(K2

7 −25)(K2
7 −9)(K2

7 −1)
K7 (K2

7 −1)(K2
7 −9)(K2

7 −25)(K2
7 −49)

All the values of the Table can be generalized to apply to J = λKn +Nm For exam-
ple, for J = λK5 +N2, the generalized Minimal Polynomial (middle column) is

(J2 −λ 2)3(J2 −9λ 2)3(J2 −25λ 2).

The constraints on the right column of the table are easily established. For example,
to prove that N1(K2

5 −1)(K2
5 −9) = 0, we note that N1Kk

n = K′
n−2 where

K′
n−2 :=

n

∑
i=3

ai ∧bi+1.

It then follows that

N1(K2
5 −1)(K2

5 −9) = (K′
3

2 −1)(K′
3

2 −9) = 0.

The higher order constraints follow by linearity, since Nk = ∑k
i=1 aibi+1, and each term

ai ∧bi+1 multiplied by Kn gives

aibi+1Kn = K′
n−2.

Once the constaints in the right column are established, the minimal polynomials in the
middle column follow as a consequence of the binomial expansion of Jn = (N+K)n,
taking into consideration the extra constraints of the form Nnil(2k+1)−1

2k+1 K2k+2 = 0 for
k ≥ 1.

There are many other identities which greatly simplify calculations with nilpotents
of the form

Nk =
k

∑
i=1

aibi+1.
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We have
(∧k−1Nk)(∧kNk) = (∧k−1Nk) · (∧kNk) = 0.

(∧nNk) · (∧nNk) = 0 for all n ≤ k, and ∧n Nk = 0 for n > k.

Nk ⊗ [Nk · (Nk ∧Nk)] = 0,

(n−2)Nk ·
(
∧n Nk

)
= nNk ∧

[
Nk ·

(
∧n−1 Nk

)]
.

Special cases of the last identity are

Nk ·
(
Nk ∧Nk ∧Nk

)
= 3Nk ∧

[
Nk ·

(
Nk ∧Nk

)]
,

Nk ·
(
Nk ∧Nk ∧Nk ∧Nk

)
= 2Nk ∧

[
Nk ·

(
Nk ∧Nk ∧Nk

)]
,

and
Nk ·

(
Nk ∧Nk ∧Nk ∧Nk ∧Nk

)
=

5
3

Nk ∧
[
Nk ·

(
Nk ∧Nk ∧Nk ∧Nk

)]
.

We also have the very important identities

N4
3 = 4N3 ∧

[
N3 · (N3 ∧N3)

]
=

4
3

N3
(
N3 ∧N3 ∧N3

)
,

from which it follows from the previous Table that

N5
3 =

4
3

N2
3
(
N3 ∧N3 ∧N3

)
= 0.

This last result generalizes nicely to

N7
4 = N3

4
(
N4 ∧N4 ∧N4 ∧N4

)
= 0,

and even more generally to

Nnil(Nn)
n = Nnil(Nn)−n

n

(
∧n Nn

)
= 0,

which gives us the interesting recursive relationship

nil(Nn) = nil(Nn−2)+n,

where n ≥ 2, for the index of nilpotency nil(Nn). Using these recursive relationships,
we find that for all integers r ≥ 0

nil(N2r) = r2 + r+1, and nil(N2r−1) = r2 +1,

which gives nil(N0)≡ 1 ≡ nil(N−1) when r = 0.
Let us carry out the calculations for Nn

k for a number of steps to see what is going
on. We find that

Nn
k = Nn−2Nk ∧Nk = Nn−3

k

(
Nk · (Nk ∧Nk)+∧3Nk

)
= Nn−4

k

(4
3

Nk · (∧3Nk)+∧4Nk

)
= Nn−5

k

(4
3
(∧2Nk) · (∧3Nk)+

5
3

Nk · (∧4Nk)+∧5Nk

)
= Nn−6

k

[4
3

(
(∧2Nk) ·(∧3Nk)

)
∧Nk +

5
3
(∧2Nk) ·(∧4Nk)+2Nk ·(∧5Nk)+∧6Nk

]
= · · · ,

the steps terminating after n-iterations when the first term becomes Nn−n
k = 1.
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3 The bivector algebra Ω2
3,3

As a simple example, let us consider the subgroup SO(3) of rotations of the general
linear group GL(3) in Ω2

3,3. The matrices of the generators of rotations in the Lie
algebra so(3) are

[Az] =

0 −1 0
1 0 0
0 0 0

 , [Ay] =

 0 0 1
0 0 0
−1 0 0

 , [Ax] =

0 0 0
0 0 −1
0 1 0

 ,

corresponding to the bivectors

A3 =−a1b2 +a2b1, A2 = a1b3 −a3b1, A1 =−a2b3 +a3b2.

Each of these bivectors Ak are the generators of rotations around the z, y and x axes,
respectively, and satisfy the minimal polynomial

(A2
k +4)Ak = (Ak −2i)(Ak +2i)Ak = 0.

The spectral basis for this minimal polynomial is

s1 =
(Ak +2i)Ak

−8
, s2 =

(Ak −2i)Ak

−8
, s3 =

A2
k +4
4

, (13)

and the spectral equation for Ak is

Ak = 2i s1 −2i s2 +0s3 = 2i(s1 − s2)+0s3. (14)

For the vector x = x1a1 + x2a2 + x3a3, a counterclockwise rotation, through the
angle θ , around the k-axis is specified by

x′ = e
1
2 θAk xe−

1
2 θAk .

Using (14), and the properties of the spectral basis (13), we find that

e
1
2 θAk =

1
4

[
(1− cosθ)A2

k +2sinθAk +4
]
.

For a rotation around the x-axis, we find that

x′ =
1
16

[
(1− cosθ)A2

1 +2sinθA1 +4
]
x
[
(1− cosθ)A2

1 −2sinθA1 +4
]

= (x1 cosθ − x2 sinθ)a1 +(x1 sinθ + x2 cosθ)a2 + x3a3.

Let us consider another example of a subgroup of GL(3). In this case we take the
generators of the corresponding Lie algebra to be

[Bz] =

0 1 0
1 0 0
0 0 0

 , [By] =

0 0 1
0 0 0
1 0 0

 , [Bx] =

0 0 0
0 0 1
0 1 0

 ,
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corresponding to the bivectors

B3 = a1b2 +a2b1, B2 = a1b3 +a3b1, B1 = a2b3 +a3b2.

Each of these bivectors Bk are the generators of hyperbolic rotations around the z, y
and x axes, respectively, and satisfy the minimal polynomial

(B2
k −4)Bk = (Bk −2)(Bk +2)Bk = 0.

The spectral basis for this minimal polynomial is

s1 =
(Bk +2)Bk

8
, s2 =

(Bk −2)Ak

8
, s3 =

B2
k −4
−4

, (15)

and the spectral equation for Bk is

Bk = 2s1 −2s2 +0s3 = 2(s1 − s2)+0s3. (16)

Using (16), and the properties of the spectral basis (15), we find that

e
1
2 ϕBk =

1
4

[
(coshϕ −1)B2

k +2sinhϕBk +4
]
.

For a hyperbolic rotation around the x-axis, we find that

x′ =
1

16

[
(coshϕ −1)B2

1 +2sinhϕB1 +4
]
x
[
(coshϕ −1)B2

1 −2sinhϕB1 +4
]

= (x1 coshϕ + x2 sinhϕ)a1 +(x1 sinhϕ + x2 coshϕ)a2 + x3a3.
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