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Abstract. This article explores group manifolds which are efficiently ex-
pressed in lower dimensional (Clifford) geometric algebras. The spec-
tral basis of a geometric algebra allows the insightful transition be-
tween a geometric algebra of multivectors and its representation as
a matrix over the real or complex numbers, or over the quaternions
or split quaternions. Whereas almost all of the ground covered is well
known, our approach is novel and lays down the fundamental ideas of
Lie groups and algebras for group manifolds that are important in math-
ematics and physics, including the 3-sphere in 4-D Euclidean space, the
3-hyperboloid hypersurface in the neutral 4-D pseudo-Euclidean space,
and the Lie group structure GL(2, C) of complex Minkowski spacetime.
Other topics covered are the Haar measure of SU(2), and the Riemann-
ian geometry imposed by the group structure at the identity.
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1. Introduction

In Cartan differential geometry, and in the Kähler calculus, Klein’s Erlangen
Program is brought to centerstage, as are the fundamental ideas of Lie groups
and Lie algebras [5]. Lie groups and their corresponding Lie algebras are usu-
ally introduced in terms of matrix Lie groups and algebras, the most funda-
mental being the n2-dimensional Lie group GL(n,R) and its corresponding
Lie algebra gl(n,R). In [1, Chp.8], it was shown that the group product of
the Lie group SU(2) of the 3-sphere S3 in R4, can be represented in terms of
the geometric product in the geometric algebra G4 of the Euclidean space.
However, the simplest expression of the group product was missed, leading to
more difficult computations and mistakes. One of the main purposes of the
present work is to correct this oversight, and to extend these results to the
corresponding Lie group of the 3-hyperboloid in the (2, 2)-pseudo-Euclidean
space R2,2 with the geometric algebra G2,2. We also briefly explore the Lie
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group GL(2,C), using the complexified spacetime geometric algebra G1,3(C)
of Minkowski spacetime.

Various geometric algebras are used in this work, and the interlocking re-
lationships between these algebras becomes important. The quaternions and
spit quaternions make their appearance in a natural way when the spectral
basis of a matrix is utilized. The spectral basis makes possible the full unifica-
tion of the matrix framework of linear algebra with the geometric framework
provided by geometric algebra. Our approach is based on the fundamental
assumption that (Clifford) geometric algebras should be considered to be the
natural extension of the real number system R to include the concept of di-
rection by introducing new anti-commuting square roots of ±1, representing
orthonormal unit vectors along orthogonal coordinate axes.

2. Quaternions and split quaternions

The quaternions were discovered by Hamilton over 170 years ago, and the
split-quaternions by James Cockle six years later. While undergraduate stu-
dents are taught nodding acquiantance with quaternions, split quaternions
are never mentioned. Allowing 2 × 2 matrices to have quaternion, or split
quaternion entries greatly extends their reach into advanced mathematics
and physics. In this section, we use quaternion matrices to gain familiarity
with the still less familiar geometric algebras G3 and G4 on the one hand,
and the split quaternions to gain familiarity with the geometric algebras G1,2

and G2,2 on the other.
The unit anti-commutative quaternions, usually denoted by i, j,k, are

naturally identified with elements of the even subalgebra G+
3 of the geometric

algebra

G3 := genR{e1, e2, e3} = spanR{1, e1, e2, e3, e23, e13, e12, e123}, (2.1)

known as the Pauli algebra, with i := e23, j := e13, k := e12. They satisfy
the rules

i2 = j2 = k2 = −1, ij = k, jk = i, ki = j, ijk = −1.

We also use the special symbol i := e123 for the unit trivector, or pseudoscalar
of G3, which is in the center Z(G3) of the algebra since it commutes with all
elements of G3.

The geometric algebra G3 is algebraically isomorphic to the algebra of
Pauli matrices P, generated by the famous Pauli matrices

[e1] :=

(
0 1
1 0

)
, [e2] :=

(
0 −i
i 0

)
, [e3] :=

(
1 0
0 −1

)
. (2.2)

Rather than just “pulling” the Pauli matrices “out of a hat”, more geometric
insight is gained by introducing the concept of the spectral basis of the Pauli
algebra over Z(G3). Defining the idempotents e±3 := 1

2 (1 ± e3), and noting
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that e1e
+
3 = e−3 e1, by the spectral basis of G3 we mean(

1
e1

)
e+3
(
1 e1

)
=

(
e+3 e1e

−
3

e1e
+
3 e−3

)
. (2.3)

The matrix [g] of any element g ∈ G3 then satisfies the basic relationship

g =
(
1 e1

)
e+3 [g]

(
1
e1

)
. (2.4)

For example, plugging in the Pauli matrices for the basis vectors given in
(2.2), and carrying out the indicated matrix multiplication over the geometric
algebra G3, gives the identities

ek =
(
1 e1

)
e+3 [ek]

(
1
e1

)
for k = 1, 2, 3. Refering to the spectral basis (2.3), for the matrix [g] = [gij ],
where the formally complex numbers gij ∈ Z(G3),

g =
(
1 e1

)
e+3 [g]

(
1
e1

)
= g11e

+
3 + g12e1e

−
3 + g21e1e

+
3 + g22e

−
3 .

Split or s-quaternions were discovered by James Cockle (1819-1895) in
1849, six years after Hamilton’s quaternions. Split quaternions are almost
never mentioned, even though algebraically they are closely related to the
quaternions. Denoting the anti-commutative unit split quaternions by i, j,k,
they satisfy the quaternion-like rules

i2 = −1, j2 = k2 = 1, ij = k, jk = −i, ki = j, ijk = 1.

Just as the quaternions are identified with the even sub-algebra G+
3 of G3, the

split quaternions are naturally identified with the even sub-algebra G+
1,2 of the

associative geometric algebra G1,2. The geometric algebra G1,2 is generated
by three anticommuting square roots e1, e2, e3 of ±1, satisfying e21 = e22 =
−1, e23 = 1. The standard basis of G1,2 is

G1,2 := genR{e1, e2, e3} = spanR{1, e1, e2, e3, e23, e13, e12, e123}, (2.5)

and the s-quaternions are defined by i := e23, j := e13, k := e12.1 Once
again, in the context of the geometric algebra G1,2, we use the special symbol
i := e123, for which i2 = −1, to denote the pseudoscalar in the center of the
algebra.

The geometric algebra G1,2 has a matrix representation that is similar
to the Pauli algebra of matrices for G3. In this case, we use the spectral basis(

1
j

)
k+

(
1 j

)
=

(
k+ j k−
j k+ k−

)
.

1In order to maintain the sign conventions of the definition of the s-quaternions, we are
forced to interchange the roles of e23 and e12 used in the defintion of the quaternions.
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The matrix representations of the basis vectors and bivectors of G1,2 are

[e1] := i [k] =

(
i 0
0 −i

)
, [e2] := i [j] =

(
0 i
i 0

)
, [e3] := −i [i] =

(
0 −i
i 0

)
.

(2.6)
and

[i] = [e12] =

(
0 1
−1 0

)
, [j] = [e31] =

(
0 1
1 0

)
, [k] = [e23] =

(
1 0
0 −1

)
.

(2.7)
Note that all the matrices above represent quite different elements in the Pauli
algebra of matrices, the difference being a different geometric interpretation
of what is a vector or bivector in the respective geometric algebras G3 and
G1,2. Never-the-less, in both of these geometric algebras the pseudoscalar
element i = e123 has the property that i2 = −1, and is in the center of the
respective algebras.

There are two other geometric algebras which we need, G4 and G2,2,
both of which are simply obtained by extending the geometric algebras G3

and G1,2 to include an additional orthogononal unit vector e0 with the
property that e20 = 1. The associative geometric algebra G4 := G(R4) =
genR{G3, e0} has the standard basis consisting of the following 24 = 16 ele-
ments

G4 = {1; e0, e1, e2, e3; e01, e02, e03, e23, e13, e12; e012, e013, e023, e123; e0123},
(2.8)

called, respectively, the scalar 1, vectors, bivectors, trivectors, and the 4-vector

I := e0123 = e0e1e2e3,

called the pseudoscalar of the algebra. Note also that I = e0i = −ie0.
The geometric algebra G2,2 := G(R2,2) = genR{G2,2, e0} has the same

standard basis (2.8) as the geometric algebra G4, but in this case the anti-
commuting orthonormal basis vectors e0, e1, e2, e3 satisfy the rules

e20 = e23 = +1, and e21 = e22 = −1.

Never-the-less, in both G4 and G2,2, the pseudoscalar element I = e0123 = e0i
has the property that I2 = 1, as can be easily verified. Two other important
properties that both algebras share are

e10e20e30 = e0e1e2e3 = I, (2.9)

and for any vector x in either G1
4 or G1

2,2, xI = −Ix. Note also that

G4 ∩G2,2 = genR{e0, e3} = G2.

Formally, a general quaternion α ∈ H ⊂ G3 has the form

α = a0 + a23e23 + a13e13 + a12e12, for a0, a23, a13, a12 ∈ R,

and a general split quaternion α ∈ Hs ⊂ G1,2 has the form

Hs := {α| α = a0 + a12e12 + a13e13 + a23e23, for a0, a12, a13, a23 ∈ R}.
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For a quaternion α ∈ H, or an s-quaternion α ∈ Hs, its conjugate is defined
by

α† = a0 − a23e23 − a13e13 − a12e12.
Of course, the quaternions H and the split quaternions Hs obey quite different
multiplication rules, belonging to the respective different geometric algebras
G3 and G1,2, so care must always be taken not to confuse which algebra we
are working in.

The group

SU(2) := {α ∈ H| αα† = a20 + a223 + a213 + a212 = 1},

with the group product quaternion multiplication. On the other hand, the
group

SL(2, R) := {α ∈ Hs| αα† = a20 + a212 − a213 − a223 = 1},

with the group product s-quaternion multiplication. The group H∗s, consisting
of all non-null s-quaternions, with αα† 6= 0, is also a group with s-quaternion
multiplication, and it is isomorphic to the group GL(2,R).

3. Matrices over the quaternions and split quaternions

Because I2 = 1 in both G4 and G2,2, we can use it to define the mutually
anihilating idempotents I+ and I−, I± := 1

2 (1 ± I), which in both algebras
satisfy the properties

I2± = I2±, I+I− = 0, I+ + I− = 1, and I+ − I− = I. (3.1)

These properties are used in what follows to reduce algebraic properties in
G4 or G2,2, to properties of 2× 2 matrices over the quaternions H = G+

3 , or
s-quaternions Hs = G+

1,2, respectively. An introductory treatment of idempo-

tents is given in [6].
The spectral basis of both G4 and G2,2, over either the respective quater-

nions H, or split quaternions Hs, is(
1
e0

)
I+
(
1 e0

)
=

(
I+ e0I−
e0I+ I−

)
. (3.2)

Since every element in G3 can be uniquely represented in the form A = α+iβ
for α, β ∈ H, and every element in G1,2 can be uniquely represented in the
form As = αs + iβs for αs, βs ∈ Hs, it follows, since e0i = I, that every
element in G4 or G2,2, respectively, can be uniquely represented in the form
A + IB, where A,B are in G3 or G1,2, respectively. Given g = A + IB, we
can now find the quaternion matrix [g]H, or the split quaternion matrix [g]Hs
that represents g for the general element g ∈ G4 or g ∈ G2,2, respectively.

Noting that(
1 e0

)
I+

(
1
e0

)
= I+ + e0I+e0 = I+ + I− = 1,
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we calculate

g =
(
1 e0

)
I+

(
1
e0

)
(A+ IB)

(
1 e0

)
I+

(
1
e0

)
=
(
1 e0

)
I+

(
I+(A+ IB)I+ I+(A+ IB)I−e0
e0I−(A+ IB)I+ e0I−(A+ IB)I−e0

)(
1
e0

)
,

=
(
1 e0

)
I+[g]H

(
1
e0

)
, (3.3)

where [g]H :=

(
α1 + β1 −α2 − β2
α2 − β2 α1 − β1

)
for α1, α2, β1, β2 ∈ H ≡ G+

3 , or where

[g]Hs :=

(
α1 + β1 −α2 − β2
α2 − β2 α1 − β1

)
for α1, α2, β1, β2 ∈ Hh ≡ G+

2,2, respectively.

For a vector x = x0e0 + x1e1 + x2e2 + x3x3 ∈ R4, or in R2,2,

xe0 = x0 + x1e10 + x2e20 + x3e30, and Ixe0 = x0I ± x1e23 ∓ x2e13 + x3e12,
(3.4)

respectively, so the quaternion, or s-quaternion, corresponding to x is defined
by α1 = 0 = β1, and

α2 = −Ix∧e0 = ∓x1e23±x2e13−x3e12, and β2 = −e0 ·x = −x0. (3.5)

Consequently, the quaternion or s-quaternion matrix [x] for the vector x ∈
R4, or x ∈ R2,2 is given by

[x] =

(
0 x0 ± x1e23 ∓ x2e13 + x3e12

x0 ∓ x1e23 ± x2e13 − x3e12 0

)
,

or by using (3.5),

[x] =

(
0 x · e0 + Ix ∧ e0

x · e0 − Ix ∧ e0 0

)
=

(
0 αx

α†x 0

)
, (3.6)

for the quaternions, or s-quaternions αx = x · e0 + Ix∧ e0 and α†x = x · e0 −
Ix ∧ e0 in H or Hs, respectively.

Referring to (3.6), and noting that I+I = I+, the vector x ∈ R4 or
x ∈ R2,2 can be expressed in the form

x =
(
1 e0

)
I+

(
0 xe0

e0x 0

)(
1
e0

)
= (I+αx + I−α

†
x)e0, (3.7)

but the quantities e0x,xe0 are no longer quaternions in H or Hs, respectively.
The last expression on the right shows that there is a one-one correspondence
between points x ∈ R4, or x ∈ R2,2 and quaternions αx ∈ H = G+

3 , or s-
quaternions αx ∈ Hs = G+

2,2.

From (3.7), for vectors x,y ∈ R4, or in R2,2,

x = (I+αx + I−α
†
x)e0, y = (I+αy + I−α

†
y)e0 (3.8)

for unique quaternions or s-quaternions αx, αy. It is not hard to show that
if xy = −yx, then (αxαy)† = −αxα

†
y. Taking the product of three vectors

x,y, z ∈ G1
4, gives

xyz = (I+αxα
†
yαz + I−α

†
xαyα

†
z)e0.
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Similarly, if xyz = x ∧ y ∧ z, then

αzα
†
yαx = −αxα

†
yαz = αxα

†
zαy,

since quaternion and s-quaternion multiplication is associative.
It follows from (3.6), that any quaternion αx ∈ G+

3 , or s-quaternion
αx ∈ G+

1,2, has the Euler-like canonical form

αx = ρeθIB̂ for x ∈ R4 or R2,2 and e0B̂ = −B̂e0, (3.9)

for some unit bivector B̂ ∈ G+
4 or B ∈ G+

2,2, respecitively, which anticom-

mutes with e0 so that IB̂ ∈ G2
3 or in G+

1,2. This important canonical form
will be used later.

If [g1] and [g2] are the quaternion or s-quaternion matrices of g1, g2 ∈ G4

or g1, g2 ∈ G2,2, then the matrix [g1g2] = [g1][g2], as follows from

g1g2 =
(
1 e0

)
I+[g1g2]

(
1
e0

)
=
(
1 e0

)
I+[g1][g2]

(
1
e0

)
,

so multiplication of arbitrary elements in G4 or G2,2 is reduced to 2×2 matrix
multiplication over the quaternions H or s-quaternions Hs, respectively [9,
p.79].

4. Conjugations in G4 and G2,2

There are three kinds of conjugation on G4 and G2,2 that we use, and which
induce corresponding conjugations on the subalgebras of quaternions H in
G4 and s-quaternions Hs in G2,2.

For g = A+IB in G4, or in G2,2, for A,B in G3, or in G1,2, respectively,

g := e0ge0 = A− IB, and g† := A† + IB†,

where

A := α1 − iα2 and A† := α†1 − iα
†
2.

The reverse A† reverses the order of all geometric products of vectors in A.
The third conjugation, or automorphism, is the composition of the previous
two,

g∗ := g† = A† − IB† = α†1 + iα†2 − I(β†1 + iβ†2).

5. Lie group manifolds for H∗ and H∗
s

For the remainder of this paper, we use the notation x = x0e + x, where
e := e0 ∈ R4 ∩ R2,2, and x = x1e1 + x2e2 + x3e3 in R3 or R1,2, to clearly
distinguish between vectors in the larger G4 or G2,2, from vectors in the
geometric algebras G3 or G1, 2, respectively. We also introduce the special
symbol e = e0; it will represent the group identity in the group manifolds to
be defined.
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The product of unit quaternions defines the group SU(2), and by (3.8),
each quaternion αx ∈ H corresponds to a unique unit vector x on the 3-D
sphere S3 in R4, defined by

S3 := {x ∈ R4| x2 = αxα
†
x = x20 + x21 + x22 + x23 = 1}.

Similarly, the product of s-quaternions defines the group SL(2,R), and by
(3.8), each s-quaternion αx ∈ Hs corresponds to a unique unit vector x ∈ R2,2

on the 3-D identity component L3 of the unit hyperboloid in R2,2 defined by

L3 := {x ∈ R2,2| x2 = αxα
†
x = x20 − x21 − x22 + x23 = 1}.

To complete the description of the group manifold of SU(2) on the unit
sphere S3 in R4, and the group manifold of SL(2,R), we must define a group
product φ(x, y) for all pairs of points x, y ∈ S3, or in L3. The natural group
product is

z = φ(x, y) = I+xey + I−yex =
(
I+αxαy + I−α

†
yα
†
x

)
e, (5.1)

for αx, αy ∈ H, or in Hs, respectively. It should be noted that the group
product φ(x, y) is well defined for all x, y, and corresponding quaternions
αx, αy, and not just for points on the unit 3-sphere S3, or on the unit 3-
hyperboloid L3. Expressing z in terms of the dot and wedge products, gives

z = (x · e)y + (x ∧ e) · y + I(x ∧ e ∧ y), (5.2)

but it is much more efficient to use (5.1) when making calculations.2

The group product z = φ(x, y) was first introduced in [1, p.291], with a
different sign in the last term on the right side of (5.2). Its group properties
are easily verified. The identity element of the group is e := e0. The group’s
associative property follows directly from the associativity of the geometric
product in (5.1). Finally, given any x ∈ S3, or in L3, its group inverse y,
satisfying φ(x, y) = e, is uniquely defined by

y = x = exe = x‖ − x⊥,
where x‖ and x⊥ are components of x parallel and perpendicular to e, respec-
tively. Not surprisingly, the group product can be expressed as a rotation.
Using (5.1), we have for z = φ(x, y)

z = (zy)y =
√
zy y
√
yz

=
√

(I+xey + I−yex)y y
√
y(I+xey + I−yex)

=
√

(I+xe+ I−yexy) y
√

(I+ex+ I−yxey)

= (I+
√
xe+ I−

√
yexy) y(I+

√
ex+ I−

√
yxey). (5.3)

The case when x = y is interesting. In this case, (5.3) simplifies to
x(2) := φ(x, x) = (xe)x, and more generally,

x(k) := φ(x(k−1), x) = (xe)k−1x for k ∈ R. (5.4)

Thus, as an element of the group manifold, x can be chosen in such a way as
to have any order. For k = 0, x(0) = e, and for k = −1, x(−1) = x the group

2The idempotent form of the group product (5.1) was missed in [1, p.292].
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inverse of x. Of course x(1) = x as expected. More generally, for any non-zero
vector x ∈ R4, or non null vectors x ∈ R2,2, the group inverse with respect
to the group product φ(x, y) is x(−1) = x/x2 as is easily verified.

Since both S3 and L3 are group manifolds, we can apply the methods
of geometric calculus in the study of their properties [1], [9]. Introducing the
notation λy(x) = φ(y, x), by group associativity for the elements x, y, z, we
find that

λz(λy(x)) = φ(z, φ(y, x)) = φ(φ(z, y), x) = λφ(z,y)(x). (5.5)

The 3-dimensional tangent space Tx of S3, or L3, at any point x is defined
by

Tx := {a| a ∈ R4 and a · x = 0}.
For the tangent vector a ∈ Tx, the differential mapping

λy(a) := a · ∂xλy(x),

where ∂x is the vector derivative or gradient of R4 or R2,2 at the point x,
satisfies

λy(a) = a · ∂xφ(y, x) = φ(y, a),

and is a tangent vector in the tangent algebra Ty at the the point y, [9,
p.63]. The definition of the vector derivative on the Euclidean space R4, or
the pseudo-Euclidean space R2,2, is based upon the Levi-Civita connection of
Riemannian geometry [5, p.235].

A tangent vector a ∈ Te at the identity is simply extended to a vector
field on all of S3 or L3 by left translation

a(x) := λx(a(e)) = a · ∂eλx(e) = φ(x, a(e)) = x · (e ∧ a) + Ix ∧ e ∧ a. (5.6)

The set of all tangent vectors in the tangent algebra Te at the identity, ex-
tended to vector fields on S3 or L3, make up the Lie algebras su(2) or sl(2,R)
respectively, of the Lie groups SU(2) or SL(2,R) at the identity e.

Letting w = λy(x), using the chain rule for differentiation for the map-
pings defined in (5.5), we calculate

λφ(z,y)(a) = λy(a) · ∂wλz(w) = λz(λy(a)) = λz ◦ λy(a), (5.7)

showing that the composition of the linear mappings of the differentials obeys
the same group properties as the group manifolds of points on S3 or L3. Note
also that

λz ◦ λy(a) = λz ◦ λy ◦ λa(e) = φ(z, φ(y, a)).

It follows that the group manifolds of S3 and L3 can be largely replaced by
the study of the composition of linear mappings in their Lie algebras su(2)
or sl(2,R) at the identity e.

Property (5.7) is equivalent to the first of three theorems which make up
the Fundamental Theorem of Lie Group Theory, first formulated by Sophus
Lie (1842-1899). Lie’s second theorem is a basic property of an outermorphism
applied to the Lie bracket of vector fields, defined by

[a(x), b(x)] := a(x) · ∂xb(x)− b(x) · ∂xa(x).
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For a(x) = λx(a) and b(x) = λx(b) for a, b ∈ Te,

λx([a(e), b(e)]) = [a(x), b(x)] = [λx(a), λx(b)], (5.8)

as is shown in the steps

[λx(a(e)), λx(b(e))] = φ(x, a) · ∂xλx(b(e))− φ(x, b) · ∂xλx(a(e))

= φ(φ(x, a), b)− φ(φ(x, b), a)) = φ(x, φ(a, b))− φ(x, φ(b, a))

= λx(φ(a, b)− φ(b, a)) = λx([a(e), b(e)]).

Calculating [a(x), b(x)] explicitly at the identity, we find that

[a(e), b(e)] = a(e) · ∂eb(e)− b(e) · ∂ea(e) = φ(a(e), b(e))− φ(b(e), a(e))

= I+aeb+ I−bea− I+bea− I−aeb = Iaeb− Ibea = 2Ia ∧ e ∧ b.
Using Lie’s second theorem (5.8), we then find that3

[a(x), b(x)] = λx([a(e), b(e)]) = 2φ(x, Ia∧ e∧ b) = 2
(

(a∧ b) · x+ Ia∧ x∧ b
)
.

(5.9)
When x = e, (5.9) reduces to the previous formula for [a(e), b(e)], as it must.

Lie’s third theorem, as applied to either of the Lie algebras su(2) or
sl(2,R), is that the vector fields satisfy the Jacobi identity,

[a(x), [b(x), c(x)]] + [c(x), [a(x), b(x)]] + [b(x), [c(x), a(x)]] = 0. (5.10)

Since

λx([[a(e), b(e)], c(e)]) = [[a(x), b(x)], c(x)]]

by a double application of Lie’s second theorem (5.8), we need only show that
(5.10) is valid at the identity. But, calculating at the identity,

[a, [b, c]] = a · ∂eb · ∂ec− a · ∂ec · ∂eb− b · ∂ec · ∂ea+ c · ∂eb · ∂ea,

and adding two permuted copies to this result gives zero, so we are done.

6. Dirac algebra of spacetime

There is a very interesting relationship between the geometric algebra G4 of
Euclidean space R4 and the geometric algebra G1,3 of the pseudo-Euclidean
space R1,3 known as the Dirac algebra, or the spactime algebra of Minkowski
spacetime [2, 7]. Just as the Pauli algebra G3 can be factored into, or identified
with the even subalgebra G+

1,3 of G1,3, the geometric algebra G4 of Euclidean

space R4 can be factored into the spacetime algebra G1,3.
Recall the standard orthonormal basis of the geometric algebra

G4 := genR{e0, e1, e2, e3}.

Essentially, we split or factor the geometric algebra G4 into the geometric
algebra

G1,3 := genR{γ0, γ1, γ2, γ3}

3This corrects two errors that were made in [1, p.294].
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by making the identification

{e0, e1, e2, e3} ≡ {γ123, γ10, γ20, γ30}, (6.1)

or, equivalently, solving for the spacetime vectors of G1,3 in terms of the basis
vectors of G4,

{γ0, γ1, γ2, γ3} ≡ {−I, e023, e031, e012}, (6.2)

With this identification, the geometric algebras G1,3 and G4 are algebraically
isomorphic [3, p.217]; we have discovered Euclidean 4-space hidden in the
geometric algebra G1,3 of Minkowski spacetime. It is interesting to note that
in the Euclidean split (6.1), e0 = γ123 is the dual γ0I of the timelike vector
γ0 ∈ G1,3, and is uniquely determined by the frame of spacelike vectors
{γ1, γ2, γ3}.

All of the geometric algebras G4, G2,2, and G1,3, can be considered to
be real subalgebras of the complex geometric algebra G4(C). By a complex
vector z ∈ G1

1,3(C), we mean z = x+iy, where x, y ∈ G1
1,3 and i :=

√
−1. The

non-null complex Dirac vectors in G1
1,3(C) of spacetime can be made into the

Lie group GL(2,C) in the larger G1,3(C). Given two vectors z1, z2 ∈ G1,3(C),
such that z21 6= 0, and z22 6= 0, we define the group product by

φ(z1, z2) := γ+z1γ0z2 + γ−z2γ0z1, (6.3)

where γ± := 1
2 (1 ± iγ0123). Clearly, the group identity is γ0, and given any

complex Dirac vector z such that z2 6= 0, the group inverse

z(−1) :=
γ0zγ0
z2

,

as shown by

φ(z, z(−1)) =
(
γ+z2 + γ−z2

)γ0
z2

= γ0.

The complex geometric algebras G4(C),G2,2(C) and G1,3(C), are all alge-
braically isomorphic.

7. Haar measure on S3

In this section, we will restrict ourselves to considering the Harr measure of
the group manifold SU(2) of S3, although the Haar measures on the other
group manifolds discussed in this paper can be treated in much the same
way.

We have seen in the last section that the group product (5.1) on S3 is
very closely related to the group of unit quaternions in SU(2). This relation-
ship can be expressed in several different ways. Again identifying e = e0,

φ(x, y) = I+xey + I−yex = (I+xeye)e+ e(I+eyex) = (I+αxαy + I−α
†
yα
†
x)e,
(7.1)

for αx, αy ∈ H. Of course, the group product φ(x, y) differs from the geometric
product xy. For comparison, using (3.7), we find for the geometric product
that

xy = (I+αx + I−α
†
x)e(I+αy + I−α

†
y)e = (I+αxα

†
y + I−α

†
xαy).
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Naturally, the associative group product (5.1), (7.1) can be extended
to any number of terms, φ(x, y, z, . . .), expressing the group product directly
in terms of the corresponding quaternions, αx, αy, αz, . . ., respectively. The
group of all unit vectors in R4, under the geometric product, make up the
Pin group Pin(4), which is the double covering group of O(4), [3, p.146]. The
set of non-zero vectors in R4, under the group product φ(x, y), is isomorphic
to the group of all non-zero quaternions. Modulo I+, the unit quaternions αx
and αy are identified with the elements xe, ye ∈ G+

4 , generators of the group
Spin(4), the double covering of the group SO(4). Thus, the group of unit
quaternions SU(2) is identified with the ideal I+Spin(4) = Spin(4)I+ ⊂ G+

4 ,
[3, p.270]. There are many applications of groups in differential geometry
which are important in mathematics and physics. For example, see [1, p.210]
and [10].

Let a ∈ Te be a tangent vector at the identity e ∈ S3, so that e · a = 0.
Calculating

a(x) = λx(a) = a · ∂eλx(e) = φ(x, a) = I+xea+ I−aex,

it follows that λx(a) ∈ Tx. Checking,

a(x) · x = λx(a) · x = x · e x · a+ e · a− x · a x · e = 0.

For a second and third vector b, c ∈ Te,
a(x) ∧ b(x) = λx(a) ∧ λx(b) = 〈(I+xea+ I−aex)(I+xeb+ I−bex)〉2

= 〈I+xabx+ I−ab〉2 = x
(
x ∧ a ∧ b+ Ix · (a ∧ b)

)
, (7.2)

and

λx(a ∧ b ∧ c) = 〈(I+xabx+ I−ab)(I+xec+ I−cex)〉3 = (a ∧ b ∧ c ∧ e)x,
or

λx(Ie) = Ix =⇒ det[λx] = 1. (7.3)

This last result shows the relationship between the unit tangent 3-vector
Ie at e ∈ S3 and the tangent unit 3-vector at the point x ∈ S3, and that
the Jacobian of the mapping, det[λx] = 1 for all x ∈ S3. This reduces the
problem of finding the Haar Measure on the group vector manifold S3 to the
problem in calculus of calculating the mass of an object with a homogeneous
unit density, which is its volume.4

Let us consider the “half angle” version of (7.3), which will be useful in
explicitly finding the Haar measure on the vector group manifold of SU(2)
on S3. Letting

y =
√
xee = e cos

θ

2
+ n̂ sin

θ

2
= (cos

θ

2
+ n̂ e sin

θ

2
)e = e−

θ
2 e n̂e, (7.4)

where n̂ ∈ R3 and n̂ · e = 0, the relationship (7.3) takes the form

λy(Ie) = I
√
xee = Ie e

θ
2 e n̂ = I

x+ e

|x+ e|
= I(e cos

θ

2
+ n̂ sin

θ

2
).

4Our derivation of the Haar measure for SU(2) given here corrects the misleading discussion
that was given in [1, p.295-96].
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We are now prepared to derive the Haar measure on the group manifold
SU(2) of S3, with the the group product φ(x, y) = I+xey+ I−yex. Following
[4], the key idea is to calculate, and then normalize, the integral∫

S3

f(x)d3x :=

∫
R4

f(x)δ(x2 − 1)d4x, (7.5)

where d4x = dx0dx1dx2dx3, and dx3 is the corresponding element of the
3-D surface S3, and δ(x2 − 1) is the Dirac delta function on R4. As before,
we clearly distinguish the identity component x0 from the other components
x1, x2, x3 for the vector x ∈ R4.

Writing x = x0e+x for x3 = x1e1 +x2e2 +x3e3, the right side of (7.5)
becomes∫

R4

f(x)δ(x2 − 1)d4x =

∫
R3

∫
R
f(x0,x)δ(x20 + x2 − 1)dx0d

3x

=

∫
|x|≤1

[ ∫ 1

0

(
f(x0,x) + f(−x0,x)

)
δ(x20 + x2 − 1)dx0

]
d3x

where d3x := dx1dx2dx3. Making the substitution w = x20 + x2 − 1 and
dw = 2x0dx0 in the inside integral, and evaluating the delta function, leads
to the further simplification of the outside integral to∫

|x|≤1

1

x0(x)

(
f(x0(x),x) + f(−x0(x),x)

)
d3x. (7.6)

Introducing the new parameters θ and n̂ from (7.4),

x = e0
∣∣ cos

θ

2

∣∣− n̂ sin
θ

2
⇐⇒ x0 =

√
1− x2 =

∣∣ cos
θ

2

∣∣, x = −n̂ sin
θ

2
,

the integral (7.6) is reduced to an integral over S2, given by∫ 2π

0

∫
n̂∈S2

f(θ, n̂) sin2 θ

2
d2n̂ dθ, (7.7)

where

d2n̂ =
1

4π
sinφ1 dφ1dφ2 and d3x =

1

2
cos

θ

2
sin2 θ

2
d2n̂ dθ.

Putting together the integrals (7.5), (7.6), (7.7), and normalizing, gives
the Haar measure on the vector group manifold S3 of SU(2) with the group
product φ(x, y),∫

x∈S3

f(x)dµH(x) =
1

π

∫ 2π

0

∫
n̂∈S2

f(θ, n̂) sin2 θ

2
d2n̂ dθ.

8. Riemannian geometry of S3

This final section is devoted to exploring some of the most fundamental prop-
erties of the geometry of the Riemannian sphere S3 induced by its Lie group
SU(2) and Lie algebra su(3).
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Following [1, p.290], we define the extensor function hx by

hx := λ−1x = λx,

so that

a(e) = hx(a(x)) = λx(a(x)) (8.1)

for all a(e) ∈ Te. Then the composition

gx := hh = λx λx,

where h is the linear adjoint mapping of h (not to be confused with the
conjugation x of x ∈ R4). The metric tensor gx has the property for the
vector fields a(x) = λ(a(e)), b(x) = λ(b(e)),

a(x) · g(b(x)) = a(x) · hx hx(b(x)) = hx(a(x)) · hx(b(x)) = a(e) · b(e),

so the metric tensor at any point x ∈ S3 is completely defined by the metric
tensor at the identity [1, p.50], [9, p.113].

One of the most important concepts of curvature on a differentiable
manifold is the Riemann curvature tensor, and it is this concept that is at
the heart of Einstein’s general theory of relativity. The curvature tensor on
S3 is most simply defined in terms of it’s shape operator Sx(a(x)). The shape
operator is a measure of how the tangent trivector (7.3) to S3 at the point x
changes when moved off in the direction a(x) ∈ Tx. It is defined by

Sx(a(x)) := Ix a(x) · ∂x xI = x a(x) = x ∧ a(x). (8.2)

The Riemann curvature bivector is now easily found,

Rx(a(x) ∧ b(x)) := 〈Sx(a(x))Sx(b(x)〉2 = 〈xa(x)xb(x)〉2 = −a(x) ∧ b(x),
(8.3)

[1, p.190], [9, p.272]. It is interesting to compare this result with (7.2). Note
also that these results remain valid for the hyperboloid L3, as determined by
its Lie group SL(2,R).
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