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ABSTRACT

& coordinate-free formulation of mappings between surfaces is
achieved by utilizing the Seometric Calculus developed by D. Hestenes.
Greatly simpiifying concepts introduced in this formulation are:

(i} differentiation with respect to an r-vector variable; {ii} gen-
eralized invariants of a mapping: and {iii) a genera1ized Lie bracket.

Basic ideas of linear algebra, advanced calculus, differential
forms, and differential geometry are then efficiently reformulated in

terms of this approach.
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0. Sumwary

This summary serves several purposes:

(1} It is a listing of the symbols used in this paper,
with a brief description of their meanings, and the page numbers on
which they first occur. ’

{ii) It lists some of the basic identities of geometric
algebra that will be used repeatedly. {Proofs of most of these
identities can be found in {11].)

(ii1) It groups properties proved in this paper according
to subject area. This serves to bring together related propevties
that are uthErwiée apart in the Togical exposition of this paper.

An index to the listings by subject headings is found on

the nexl page.
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1, Introduction

In references [9] and [10] D. Hestenes sets down the funda;
mentals of differential and integral calculus in terms of geomeiric
algebra. Twoe greatly simplifying features of the re5u1tiﬁg "geore-
tric calculus" are that it is coordinate-free and uses only one
differential operator.

The purpose of this paper is to apply geometric caleulus to
the study of smooth mappings between smooth surfaces in Euclidean
space. A great simplification of this theory is made possibla by
the introduction of the following important conceptis:

(i) The concept of an r-vector variable, and of differ-
entiating with respact to an r-vector variable.

{i1) The ﬁuncept of "characteristic multivectors" of a
mapping as a gereralization of well-known invariants
of a mapping, such as the Jacobian, divergence, and
curl.

{iii} The concept nf.the Lie bracket of multivector fields
as a generalization of the Lie bracket of vector
fields.

Tﬁis paper is divided into two parts and a series of appen-

dices.

Part 1 is a study of the differential and adjoint mappings.

These 1inear mappings are induced between the tangent spaces of ftwo



In Part II the "field" properties of the differential and’
adjoint mappings are studied by censidering them as mappings of tan-
gent nultivector fields on the two surfaces.

The appendices make up an impovtant part of this paper,
They complement the material in Parts I and II, and at the same time
velate it to more usual formulations found in the literature,

In Appendix A& the methods of Part I are used in the study
of Tlinear mappings on Euclidean n—s#ace. By looking at the . char-
acteristic equation of a linear wapping, further insight is gained
into the nature of the characteristic multivectors of a mapping.

Appendix B discusses the Jacobien, and shows how integrai
transformtion formulas can be easily derived from properties of
the differential and adjoint mappings.

Appendix € provides explicit calculations for two kinds of
mappings which occur freguently in apslications.

Appendix [ shows that a one-to-one correspondence exists
between differential vr-foris and r-vector fields. This correspon-
dence is then exploited te show how all the properties of forws,
and operators on forms, follow easily and elegantly from algebraic
properties of geometric algebra and the gradient operator.

Appendixz E introduces the intrinsic gradient operator on
a surface and relates it to the tangential gradient. In addition,

the Gauss curvature equation for a surface is formulated in a new



and differential geometry. References {91, [10], {11] have already
been mentioned in connection with Hestenes. Reference [18] is

Whitney's Geometric Integration Theory. In Part I of this book,

Whitney uses a geometric approach which is the c¢losest to the one
adopted here {with the exception of [91, [10] and [11]}. However,
in most cases, references to Whitney have been avoided since his

approach is not as familiar to most readers as some of the others.



2. Preliminarias

This paper makes extensive use of the geometric algebra and
calculus as developed by Hestenes in [9], [10], and [11]. A& partial
1ist of the algebraic {dentities that will be used repeatedly is
included in the summary. )

Let E‘n denote Fuclidean n-space. FPoints in E’n are
named by vectors. These vectors, under the operations of geometric
addition and nultiplication, generate the geometric algebra 27 of
2" dimensions. At each point pe 8n there is associated a gea-
metric algebra X:?p. called the tangent algebra to & at p .

e

Since En is ﬂa“i:,, Fa p =, i.e., %jp is & copy of X7
at each point EE‘.EH - )

let "X m. denote an m-surface in & "’ At each point
X E “Xm there is associated a geometiric algebra 2 « called
the tangent algebra to K " at x . HNote that ,?jyx is of
?M-dimensions and that 7 x-‘:)ﬁj » i.e., the tangent#algebra of
the m-surface X . at eac; point x is a 2™-dimensional sub-
algebra of 27 .

Formal definitions are now given.

-Definition 2.7 Euclidian n-space is dengted by & _. The
geometric algebra of £ = is denoted by . 8y BT is meant

the set of r-vectors A e ), where 0 z<v<n.
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Definition 2.2 An m-surface in E'rr is denoted by ﬁ{'m ;

The tangent algebra of X o At a ﬁn*nt x s denoted by ¥} «
By . : is meant the set of tangent r-vectors A€ by L s wEEre
g<r gwm . i

Note that T1-vectors will always be distinguished from other
directed ﬁuantities by small underiined letters, such as a , B,
X, ¥, etc. )

The vector x s always uﬁed for the name of a point on
the surface X m Similarly, 23 ¥ always denotes the tangent

algebra of the surface X n 4t the point. x . The general rule

is:  Anything subscripted with an x refers to the surface X 0 -

Definition 2.3 A surface X - is said to be flat, DF a

tangent m-plane if for any two points x; and x, , X, = 2 .

Definition 2.4 A function F(x} is said to be a multivector

~fieldon X iF F(x) e 2D foreach xe X . If Flx)e by <

St

for each x ¢ X o then F{x}) is said to be a tangent multivector
fiald on X o
Often Fx » Where Fx = F{x} , is used to denote the value

of the function F(x) at the point x .

Definitien 2.5 The set of all multivector fields on TK.m

Je AdAoppted by JE{+YY  The <t nf all tanoent mualtivector fields



continuous.

Definition 2.6 The symbol ¥, 1is called the gradient ar

et

tangential derivative operator on the surface K n at the point x .

The tangential derivative V., differentiates muItivectnr

-u-.-r

fields oan X _ and behaves algebraically Tike a wector of 2j

u-r

For a further discussion of V., s 5e2 [8] and [10].
- 1

"Dotting" the gradient Ty with a tanget vector y e O

gives ¥- ? , the directional derﬂvat1ve nperator This can ke

shown to be equivalent to the following more usual definition:

Definition 2.7  v-2 F{x) = |y| Yim Flyitx) - Fle) , where
WX = AxO Ilfr"'}il

F(x} ¢ {F{x)} , and &x + 0 1n such a way that:

(1} x + ax is always a point on ‘X "

. Tim Y S , oy
(i1} w0 ToxT ¥ . oWhere ¥ E iTe

Definition 2.8 y: K _~ Y. is satd to be a mapping
11 k

from the m-surface "X . to the k-surface Y o Py yix) e Y K

for each X e fﬁlﬂ

The smooth surfaces and mappings considered in this paper

haye the following properties:

peanerty 2.9 There exists a smooth pseudascaler field



Property 2.10 . If &*JE}F{HEHEH then there are

multivector fields afx) e {F{x}}; , and Artﬁ} £ {F{E]}: such

that Ar+1 = ghﬂr .

,=1.
Property 2.11 ¥, = 1£ 1£-v§ . Property 2.11 guarantees

dvr

that ¥, behaves algebraically like a vector in by ; .

Property 2.12  If y:‘Nm *‘Yk is a mapping and

1

Fly) e {F{y}} , then for each ve 20, >»
g-vEF[yia}] = [g-vﬁyiaﬁ}rng(g] .

(This is & statement of the chain yule for partial differ-

entiation.)

Property 2.73  For any smooth multivector field F(x) on

Wos TAYF(x) 50

P

{This is equiﬁa1ent tg the property that partial derivatives
commute in a flat space. For a further discussion of the signifi-
cance of thic property see Appendix E.)

& "chain rule" for the gradient cperator is derived from

properties 2,17 and 2.12 in the following theorem.

Theorem 2.14 ¥ Fly{x)1 = o,y(x}-9,Fly} -

I T R L=1l. _ PF..FuYT PO SR B I |



Let X,, «.. > 3. be pulnt% on K.

befinition 2.15  Call X = ¢, -x}a .. .Alx,-x) the

r-vector variable of the surface % at the point x ¢ % .

The r-vector variable Er i5 an eriented measure of the
r-simplex with vertices at the points x , x , ... , x. . HNote
that |ir| {s yolume of the simpiex. See [18, E. a0].

- 1
Definition 2.16 Call y.(x) = 7 Dv(x,)-y000W ... A
.[ffir}-y[ﬁ}] the r-vector variable of the mapping y = y(x} at

the point y = y(x) e'\"k .

Definition 2.17 Call v- =¥ A ... AV the gradient
o %4

operator with respect to the r-vector variable ir at the point

Ee.ﬁgn . It is understood that ?x differentiates oniy with
o

respect to x. and is to be evaluated al x,

=X .
=1 -

Certain mltivectors Ji = JE ix}, called the character-
. r I

istic multivectors of the mapping ¥y = E{E] ét the point x ,

are now defined.

Definition 2.18 JEF{E} = vir‘"v" sforr =1, ..., m.

The usual Jacobian Ji[ﬁ] of the mapping 'x = y(x) 1is

. TS R T 1 .Y Fonre Elown BT T o mmgprm - min w



Definition 2.20 A mapping y = y{x} is said to be non-

singu?ar if Jim(ﬁ} # 0 Tor each x E‘Km ]

The relationship of the Jacobian of a mapping to J§
m

is further discussed in Appendix B. )
This section ends with the lemma given below. It 15 useful

4in the proofs of theorems in later sections,

Lemma 2.21
BF T Ty e =07 TR
. 1. - v -
(ii)  rvz ¥ N v,y
rhoUX L2 21 X r e Bpol Xr
Proaf _
. v ! -
(1) Ve Ve s vaz-vﬁlty@l)ﬂ(ﬁ}]ﬁ{y{az} ¥(x)]

=T-;.-e;ex1-vxz[y{ggz}-y(a}]ﬂ[}‘(ﬁz}'ﬂﬁn

e

h?Ea'vﬁlyz ]
Hence ?5; ?S]yz =0.
Similarly E’izgl-_jfz =0 .

(i1} The proof of (ii), follows by repeated use of (i).

- 1

AT L N TR B 1 e —ul
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PART 1

THE BIFFERENTIAL AND ADJOINT MAPPINGS



3. Defimitiens and Basic Properties

.Fm* each point x & X o the mapping y: ‘Km + ‘Yk
induces twe Tinear mappings: (i) The .differentia'I mapp;ing Yy
from the gesmetric algebra 2 of & | at the point x , to the
- tangent algebra fltj}y of Y . &t the point y = yix). | (i) The

adjoint mapping v from the gecmetric algebra 47 of E’n at
the point y, to the tangent algebra 77 o of X o at the

point x . These mappings are now defined.

Definition 3.1  y.: Pl ,&Jy is given by:

n

(i) y+ﬂu = A, for Ay e 2

(ii) 3"1"‘5‘ = A +¥

" ril}:r,fm‘ﬁrﬁﬁjrand1§r§n

r .
YAy s where ﬁ.=z Ai e M.

. n
{41i) A=
7t f=n 1 j=0

Mote that the domain of ¥y is not restricted to X
" as might be expected, but is all of. ) the geometric a]gebrawuf
. |
The mapping ¥y is sometimes called the "push forward"
.mapping because it maps tangent vectors in the same "direction”

as y(x) maps points.



2

Y

Definition 3.2 - yT: % +-:ij is given by:

"
(1) yfﬂn = A , for AR e
{ii) E+Ar = vg Er' A’ > for B e 7 and 1 <r<n.
r
i) A e S A .
(1ii)} y A= . y R, where A=, Ai e ¥ .
=0 V1

Just as for Yi s the domain of yT is not restricted to

the tangent algebra of the surface q{ - at the peint Y s

but is all of ¥ the gecmetric algebra of &£ 0

" The mapping y+ is sometimes calied the "pull back"

mapping tecause it maps tangent vectors in the opposite "directicn®

to the "direction" that y(x} maps points.

Finally note that upper and lower indices are used to dis-

tinguaish between what is being "pushed forward" (Tower indices),

and what is being "pulled back" {upper indices}.

Basic properties of the mappings Ya and yT are now

studied.

r

Thegrem 3.3 (7} y;(AB} = y,A A y B , for A, B e},

(i1) y(AB) = y'AAYB, for A, Bc .

Propf  Since Yy and yT are linear, it is sufficient

o - Y | ™ N«

I T T



identity 0.40 {r+1) (b-¥

*

r

Yihy b Y4B

L--‘_r“-l- 1

Vs )y
X 7T

{ﬂr'vi yr} A {E'vk

w i

Yrp!

o

The proof of {i) is completed by induction on s .

(1) ¥ (arB®)
g+1

jdentity 0.42 v;

St

' identity 0.40 Vs

g+i

1
=l

- )
?E j"5+1 (EII'LB )
o L] -, S
1(y5+1 )-8

— . . S
(¥g Ygur 26

The proof of {ii) is completed by induction on v .

XXXX

The statement of theorem 3.3 with "dots" replacing

"wedges" does not hold, 1.e.: yf{ﬂ-B} # yTﬂ-yTB and y?{&-B} #

y+ﬁ-yTB , for an arbitravy mappihg ¥ = yix} . If y = ylx) is

a linear mapping, the condition that ET{E'E} = ETE'yig for all

1 -
a, be 517 4s equivalent to saying

¥y = y{x}

N -l

is an orthogonal

14
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Theorem 3.4 (i) Ar-?i_ yj = Vo ¥y A yA, where

A e b o, and r<i<m,

Y , where B" e 1)

(11} ¥- ¥.+B8° = {yTBSJ h¥- ¥.
% ' Xiwg 17

and s <7 <m .

Proof .

{1) A E’xi Ys 7 A {?xrh ?xi- Jy. Ay

. _—-.I : ] ) ) - -
{11, n. 12, 3.12] = {-r) (P)Arvxrvx_ i ¥,

11
=]
>

Yip b YA

.o
(i1} The proof of (i} s similar to (i} and is
omitied.
AXRX
The following theorem relates the differential and adjoint

mappings through the inner product.

Theorem 3.5 (1) {ETAP}'BS = rffﬂr-yTst , where r > 5 ,



i6

Proot

{1} (}’ITHF}'BS

it

- .5
A V- ¥ -B
rox.or

.'I_
theoren 3.4({11) ALy B av; 17

Il

+ -
identity 0.42 (A (y'B%)]ev; F

v EA BT

+BE

- 3
Af"v}-{ ys B

G Ay 5

- . 5
v-  (y. . Ay A B
Xg_p ST tr

theorem 2.4(4)

5

summary o.42

Ve Ye_oLlysAl)eB
Xg_p " S-T T |

= ¥y, 8] .
- KXKX

Tor _ i r
Corollary 8.6 A -y B = [y%ﬁr} B .
proof et r =35 in part (i) or (ii) of theorem 3.5
ARXA

- P T TR . . I R sl i e S S A o



4. Compesed Mappings

Let K _ s Y ¢ ¢ and "5‘3.[ be surfaces in £ o an
suppose y: X n “(k , and  z: q{ Kt 35] . Then the composed
mapping  zey: XK - 4—351 .

"J";:'E Y-z

Lemma_ 4,1 Vs Yy Py

I~
haon
i

r r r

Proof: ¥y TF, = V; wr zly(x,)] Aeo.h 2ly(s )]

r r

theorein 2.14 v r]_' [y{ﬁl}-ﬁglz{{l}] .|

r

[yi{x.)ev, z(y.)]

Ir

n
=]
I
Tl
L ]
=]
1
[

theorem 3.3(4)

Theorem 4.2 {i) {z-y}+ﬂ = zf{y$ﬂ}, where Ae )
(11) ['Z“y‘ﬁﬁ = f{ztl"ﬁt} , where A ¢ X

Proof - Since ¥y and v’ are linear, it is sufficient -

to showt the theorem for rv-vectors Ar E 47

17



z, (¥ AL

(i) (zey)TA"

1
=
r
+a
-]
T
=]

y = ¥
V= ¥ *V= Z -
Kr r }P ¥

Temma 4.1

n

The following theorem aives the characteristic multivectors

of mapping composed by addition or mwltipiication.

i it ey s
Theorem 4.3 {7) Jfﬁr {y \FP} Z,
(i1} If y(x) = glx} + hix) , where ¢ C . =+ £ .
¢ ?r - "
and h: X > then J- = > ¥- A= q. . A h, .
m n? Yo T X Kpog rU0 i

Froof:

(1} is a restatement of Ternma 4.1

(i1) Jir s y.{x)
= Lvo [alx,) + hlx)] A A [glx,) + hix)]

r

18



In Appendix A, theorei 3.9(i1) is used in catculating the

characteristic polynomial of a linear mapping.

19
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5. Hon-singular mappings

When y: X 0 +—?’m is an invertible mapping (non-singular
_nne-tufnne} between the m-surfaces ?Kln and qf:n , the differ-
" ential and adjoint mappings are also invertibie, provided their .
domains are restricted to J, and J%jy respectively. This
" is now shown. "
Let i ¢ jj T be a non-zero pseudﬁécaTer on X n 2t

the point x , and let 1 = y+i be the corresponding pseudo-

\ %
scaler on °Y  at the point y = y(x} . (Note that Jg £ 0
. _ _ m
implies 1£ # 0, since 1g = y+15 = 15-v£m_3m - 15-J}m _}

Theorem 5.1 If A €3 and Be j(jy ,and 3o (x) £ 0,
L ts N O —_— . _
then: (i} A =y'B iff 138 y+{1§f} .
. . . S N T P
{(ii) B = ETA_ iff _1£ A y_(1£ B) .

Proof  Since HT and y+ are 11néar, it is sufficient to

I T U I T o =217 w_uni."fﬂ'lr'l: ' hr -~ 9"] S Br E ?‘J] o
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. Y _ . '1' r _;_. ; 1 A | » E}
ygﬁﬁ y.i.hﬁr.f B ) MR
= by - .r‘ L] -l
= {1, ¥z ¥B )V Yoo
et ™ i
. . s " )
igentity 0.42 = 1x[vi ¥ B') & Vs Yo
- ¥ m-r
=i (B aY F
3 m=r T
theorem 3.4(i1) =i, ¥z 7 B .
\ % Xy
= r r
=i -¥- ¥y B =1iB
ar xITI m -

. , =1 =1 . .
{i1} Let A" = iy AF and B = i Br in part (i}

The

wnich has just been proved. Then il A =y i7'B_ iff

. =1 - , .=1 . =1 - 'f'r"‘]- = —
1F1E B, =y i, A, »or 15 A, =y B, iff B.=yA.>

-

and the proof is complete.

XXX
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6. Curl Free Mappings

Let y: ¥ o %Y . be amapping of the surface X 0

into the surface Y L

Defiﬁition 6.1  The mapping Y= y{x) s said to- be curl
free at the point x e K moe 1F VA y(x} =0 . The mapping
y = y{x) is said to be curl free, if it is curl free at each
point X e X -

The following theorem shows that at points X e %X n
whére the mapping y = y{g:;] is curl free, the differential and
adjoint mapping; are identical.

Theorem 6.2 If v, A y{x) =0, then yA=y'A for

..'l..
each A g 17,

Proof It is sufficient to show the theorem is true for

revertore A o L



or y.a - yTQ =0. For r

i suppose y A; = v A

=i+ 1 wite ﬁi+1 =g i Ai . Then
Iphis T Y3 A A
theorem 3.3{i} = y:8 b y|ﬁ1
= y‘]'a nyA .
theorem 3.3{ii} = yTg hA= F%ﬁﬁ+1

Hence the theprem is proved.

orollary 6.3  ¥. = jr:ﬁj-+ ;ijx Qi jﬁjy .

.'I

, and for

REEX

Proof The proof follows immediately from thegrem 6.2

and the facts that y.: 3 ) y and yT:'jjq. Jij )

Coroliary 6.4 a A
Proof g A ?xyig}
theorem 6.2

identity 0.37

XX A

j
vy y{ﬁ} =V, y(x) a, for ace &

2 ?EF{E} - 5-?iy{§}
vylxia - jﬁyia}-g

ar

?E?{EI hoa

identity 0.37

ATRTAT RS

23



Theorem 6.5 If ¥, A y(x} =0 and A cJfy, then
(i) hr'?éyfai} = vf(ﬁ}'ﬂr
(i1) A_A ‘Ff{gg} = ?53'[:5,) A A,

Proof (i) 'Ar-?i y(x) = ALY,

wr

ylx} - A AV yix)

identity 0.37 = Ar ?Efy(ij - [ﬁrﬂvﬁ}-y(i]

1dentiﬂr 0.3 = [Ar-y{@} i v:; =7, YA,
{3i) Ar A ?E y(x} = Ar vﬁ ¥y - Ar ?5 Y

using part {i) = ?E y A - ?E yh

identity 0.37

I
=
b
R
=
f
™
==
I
-3

XAXX
Theorem 6.5 is generalized by the next theorem.

Theorem 6.6 If ¥ A y{x} =0, then for all 1, r<n,

and Ar e 3. (i) Ar-?ii ¥; = vii

{ii} ﬁr A ?Ei yi =¥ i r "

%
Proof Part (ii) is proved first, since it is used in

the proof of {i} .
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a1
ik

1]

theorem 6.5(71) ?ﬁ!zlﬁﬂrﬂvﬁiﬂ...ﬂvzz.gz]ga...xi

theorem 6.5{i1) P ooe. V. ¥, A Ay AA

il Ay X =1 ol r
Temma 2.21(14) = ?Ei yi A Ar

(i} Let I ¢3" be a pseudoscaler of 2 . Then for

- A
; I {I Jﬂl.r} A ‘Fii j".i

]
| ]
=1
|
b
Il

identity 0.43

using part (ii} =1 Vg Ei A (I A;}
i
identity 0.43 =_?ii yi-Ar

The proof of the theorem is complete,
- XXXX
'The characteristic multivectors of a curl free mapping
ave particularly simple, as is shown by the final theorem of this
section.

Theorem 6.7 If vi A y{x) = 0, then Jir = ?ir-yr . for
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to simplify expressions.
For r =1 there is nothing to prove, Suppose now for

all r < i that ?;ﬁﬂy =vi-yr. Then fer v =1 ,

" %
5 = _Lry. v .
‘i"gi ¥i =3 [:?“1-1?35, yhy: ] Jemna 2.21(i4)
identity 0.37 = -.17— v ?x'fjfﬁii*l}]
{-1 % 7

. ] v
identity 0.38 = 4 [7,y() 7% it Vx

. 2 - _
identity 0.40 = E— Fee, -‘Fiirz " y+{§]hyi_2]
cor. A.7(11) 1, ' 0N ]
gnd s e {g —V= V. ¥ E .I"Ly'. 3
theorem A.6 TR P Sl 12

thearem A.6
cor. A.7(i1)

_1 i
T [ms t vﬁy.i.ﬁl

cor. A.7(ii) ] - 5
and == [o + 9, vyl

thecrem A.B
- XAAX

" A proof similar to that of the last theorem is given in

Appendix A (thecrem A.17).
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7. The ldentity Mapping

tet X m be an m-surface in & n o+ and let y: X m'*'x n

1nr

be the identity mapping y{x} = x .

Theorem 7.1  For A e :tjx , {1} hrvﬁﬁ x=7rhA

el

(i1} A A ?E X .{mnr} A, (i) ?E x-A_ = r A

(iv) ?E X h A, {m=-r) Ar

Proof: (1} The proof is by induction on r . The case

r =1 follows immediately from definition 2.7 with F(x)

11

X .

Now assume for r =i, that A,-¥, x =1 A, , and for r i+

write A, =ah Ay Then:

A, ¥ X

it % {Eﬂﬁi]'va 3

identity 0.38 a A (A9 x4 (-1)'A, 39, X

identity 0.37

I
=1
I

L ]
=]
=
1
£
[ ]
—
I
[ ]
«]
b
o

1o

+
———
t
—]
™
=
=11
L ]
<}
2



(Y AR XA T x = AT X
using (i) = ArjE iivﬁi — rh,
property 2.11 = A 1él1x-?§ x —rh
using £i} = A 1£1m_1'- - rh.

= {m-r) Ar

{ii4) and (iv) follow from {i) and {ii) , using

theorem 6.5, if it can be shown that Vo oy o= 0 . This is shown

—r

below.

L X" %2
-1,

property 2.11 = [1E 1§.v§ %Js

using (i} =[ml, =0.

XXX

Corollary 7.2 vx X =m, or equivalently ?x'i =m ahd

]

28
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Lemma 7.3 {i} For the mapping y(x) = x and A ¢ jtjx .

g P *
{i1) More generally for A, e ), LI ﬁrﬁ v A

where A e,ij is the tangential part of A, to the surface
I -

, . _ N _
X ., in the decomposition A Aru ﬁﬂL i

Proof (1) The proof is by induction on r . For 1= 1,
the lemma follows from theorem 7.1{i}. Now suppose for r =1 ,

FTﬂi = Ai , and for r =1 + 1 write H1+1 =g h Ai . Then:

Fihig = YeBHA;

theaorem 3.3{1) = yqa A ZLY
=alh” Ry

(ii) The proof of (ii} follews from the decomposition

A=A A and part (i). Il.e.:
r ry r

wofh o=y, A+ A )



1
=

property 2.1

Thus FTAF = A for any A ¢ 5.
T
XXX

Lemma 7.3(1} is used in the prnof of the pext theorem.

Fart {ii) of this lemma is later used in section 10.

Theorem 7.4 Let Ar Y, ; . Then

—r

()
iop Ar for r<d

(i) AVs X =

i (l”) i
; ﬂr for r > 1

]
e

(i) Hrﬂvii X, ;
o for v+ 1 >m

Proof (i1} is proved first simce it is used in the proof

of {i}.

(<3) The nraoft ic by induection on i . For i =1 . the

30



-~ 1 . .
ALY X = o {[ﬂtrﬂ‘UE R v %} Xq
5+1 5 wt
- _ m-{ir+s} oz
theorem 7.1(i7) ol f'-‘nr A ‘Fxﬁ X
induction . m={r+s} (m-r 2
hypothesis 5+1 5 T
(m—r) .
“Asar ) Ao

The second equality of theorem 7.4{11) follows from

theorem 6.8(31).

(i1} For r <,

AatVe Ky = Vo Xy My A theorem 3.4{1)
. i i-r
lemma 7.3{1) =V xi_?ﬁﬂr
i-r
N (m—r
theorem 7.4(11) = i-r) A

, =1, \
ﬂr-?i X, = 15 {15.1'-"1?] A ‘Ifi

31



Corollary 7.5

Froof V-
xr

theorem 7.4(1)

X

r

3z

=q 1 -?i X property 2.11

L 9.9.9.



PART 11

MULTIVECTOR FIELDS ON SURFACES



Whereas Part I of this paper only studies the mappings 31_

.r_

and y' between the tangent algebras bx and }fur'a

yix
fixed point x ¢ X o s Part 11 studies their "field" properties
by considering them as mappings of tangent multivector fields on

‘Xn and :H)k'

1

& The Differential and Adjoint Mappings of Multivector Fields

Let y: X ¥ '\Hk be a mapping of the m-surface X _

into the k-surface Y , .
the adjoint mapping y' . defined and studied in Part I,
can be extended pointwise to a mapping of multivector fields on
Y, into tangent multivector fields on X . This is done

in the definition below.

Definition 8.1 g,r'[': {6{yIt ~ {F{iﬁ}}x is given by

F) = vT6 [y(x)] » for cach xe X | and Gly) e {6(y), .

34



wmapping of multivector fields, all properties prnved in Part T for

Ll
y' remain valid.

If the mapping y: K o ﬂ?n1 is invertible ([one-to-one
and non-singular). then the differcntial mapping ¥, can also be
extended pointwise to a mapping of mtltivector fields on °X "
inte tangent multivector fields on a1 . This is dore in the

following definition. .

Let x: “f’m +°Xm denote the inverse mapping of y(x),

f.er x = x[g} iff y = y{ﬁ}.

Definition 8.2 tet y(x) and x(y} be given as above.

Then yf:'{F{E}} +'{G{xj}y is given by G{g] = y+F[x{£]], for
each F & {F[i}} . and Y& “an.
The field: G{E} , where G{y} = 3+F[x{y}] is said to be

the “push forward" of the field F(f} .

35

Since the mapping y,. Js extended pointwise, all properties
T

of s proved in Part I remainh valid.
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9, Mapping the Gradient Operator

et y: X . “(k be a mapping of the m-surface X o
into the k-surface ‘Y L

Since by property 2.11 the gradient vy behaves 1jke an
erdinary vector of ) ; , the chain rule for the ‘yradient operator

{theorem 2.14) can be w;itten in the following instructive way:
_ . F
(9.1 v =¥y ¥

X 4

Equation (9.1) shows that the gradient v _ on the surface
X - is the gradient ﬂy an the surface ﬂf K “pu11ed back" to
the surface 7 0 -

The next result is theorem 3.3{ii) applied to the gradient

v . It is valid because vy is a vector operator.

o

e

Theorem 9.2 yT[?F ﬂB{yl}] = yfv A y+B{y1} , where
417 -
B{y) is a multivector field on e L
Note that on the right side of the equality in theorem 9.2

that the gradient ¥V, only differentiates B[£1) and not y+
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1]

Theorem 9.3 f[vyhﬂ{;.;}l v, A fB[yEi}]

T g t t5,5 .
B B th .
Proof ¥ [v£S+T {§5+1}] ¥ v£5+1h y (35+1] eorem 9.2

equation {9.1) =V, A Vg §5*55[¥(§5+1]]
=3+ 5

property 2.13 v, A vz TR Ivix)]
- 5

T s
?iﬂy B
YANX

The corresponding statement of theovem 9.3 for dots is

false, 1.e.: y*vy-B{g] # vx-ny{y}. However, in section 13 of

o

this paper it is shown that under certain conditions

¥y vx-ﬂfaj = V'Y Alx) , where Af{x) is a multivecter field

o X "
Theorem 9.3 is used in Appendix D to show that the d -

operator on differential forms commutes with the pull back mapping

of forms.



1

Theorem 9.4 (y,A )7, B°(y) = v (A7) B°ly{x, ],
i ) -

where A« 1. and ES{E} e {F(y}}

Note that Vy does not differentiate Yo in theorem 8.4
-y

above, The following theorem allows Vy to differentiate Yy o

g

*

Its proof depands upon property 2.13.

Theoren 9.5 [j,r'Jrﬂtr,]l-':-'}i BS{E} = y?(kr-vx} Bs[y(g}] .

Proof (y+ﬁp}-vy BSEEJ y}{ﬂr'?x ) Es[y{ﬁr}] lemma ¢.4

(B -y, }evs ¥ B[y(x.)]
P TR e r

Ar-{vﬁnv; }EP_IBS[E{EJ] '

property 2.13

]

. - 5
identity 0.42 {Ar'vi}'?ir ¥..,B Ey(x}]

-1

95 (kv Bl(g)]
KEEXK

Thegrem 9.5 is a generalization of the chain rule for the

rraddient aBerstay
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(9.6) v,o=1_ ¥,

Y4 ix X, Yy ¥

where i, 1s a pseudoscalar field on Kopsand i =y

e

is the corresponding pseudascalar field on Y -

Equation 9.6 shows that the operator ixvx on the surface

K is "pushed forward" by y, into the operatdr iy?y on

=)

the surface 7Y m
Equation 9.6 can also be immediately derived from theorem

9.5 by letting Ai = ix in that theorem.

e
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10, Lie Brackets

Fundamental to the study of multivector fields on surfaces
is the Lie bracket, or bracket operation. In section 10a the
definition of the Lie bracket operation of tangent multivector
fields is given and Tﬁs basic properties are studiéd. Most impor-
tantly, it is shown that the Lie bracket of tangent multivector
fields is a tangent multivector field, and that the divergence of
a tangent muttivector field is a tangent multivector field., In
section 10b it is shown that the Lie bracket of tangent multives-

tor fields is preserved under the differential mapping.

a} Definition and Basic Properties

tet X " be an m-surface in & 0

s _ . _ T,
Definition 10.1 [Ar’Bs] = {AT ?5] A ES{E} Ariﬁjhtvﬁ BS],

,1_

% is understood to differen-

where A {x),B.(x) e {F{y}E , and ¥

tiate only to the teft.
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The following theorem gives fundamental properties of the
bracket operation. Let alx) , Ar[g} ., bi(x) , BS(E] . Etii] ,

e {F(x)), -

Thearem 10.2 {1} [Ar+Bs’ Et] = [Ar’ctl + [Bs,ﬂt], and
[A., 84C.1 = [ALBJ + [4.,C] . )
(i1) [A.ra, BJ = AA[BT+ (-1}7aplA LB ], and

= 1y8
[A. baB. ] = [A ,blaB  + (-1)° [A.B IAD .

P _ Tt
{iii) [Ar,le = — EBS,-Rr] .

Proof (i} The proof is trivial and is omitted.

(11) fﬂrﬁé; B, = [(A A2}y T8 (x) — [A (x)aa(x)Ia(v]-B )

summary 0.38 Arﬂig-?x Bsig}] + {-IJfEh{Ar~vx}ﬂEE{§)

_-Arﬂ[gfﬁ}h(?grﬂs}] —-{-T]rEﬁ[Ar{E}hivg-Bs}]

AAL2,B.] + {-1}rﬁﬁ[ar,55] :

The gther part of {ii} is proved in a similar way.
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et Tt ¥ ¥
(BLOAT KL — (817,008 ()}

1]

togtot
~ [BLLA T .

Simitarly, the other part of (iii) is proved.

XXX

Corollary 10.3 [A B = - {-1}(r']}{5"1}[55,ﬂr]

Proof The proof follows immediately by substituting

R )J7_r r

r r’

B: = (-1 }5_(’5__1}3 , and
s
{r+s-1}£r+5~1} -
[B..Ad = (-1) . [BLAT ,

inte the right side of theorem 10.3(iii}.
' KAXX

A special case of corellary 10.2 is:

. Coroliary 10.4 EE,BEE = _'[BS’E] .

The bracket operation is also defined for directional

derivatives.. The definifion is now given.
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The theorem below gives the i@portant relationship between
the bracket operation of vector fields, and the bracket operation
of directional derivatives. It is further discussed in Appendix E
in connection with the “"curvature® of a surface,

i
Theorem 10.6 For any alx} . bix) e :tj

L

3

£

L

(i) (amb)-(v av,) = [a,b)ev, - [3:9,» B°F,]

- e -

(11} [gblv, = a7 b7, ] 2 0 .

Proof (1)} The proof of (i) is direct.

(gﬂg}-{vﬁmfj 3-{9-?5 Tyl — befa-v 9]

- -

n
For

.
<]
52t

- — .y [] —_ [ - 1) L]
v, — (bev, abwy E'?EE'VE + {a Uy b} Ty

- a P

» - Ta, Y
[a.b] Ty e b vﬁl
{ii) The proof of {ii) follous frem (i) since by

property 2.13.

[Eﬂg}-{?ﬁhﬁaﬁ =0 .
XXXX

Baytc {31 and (i1} of thegrem 10.6 are kept separate because



Leima 10.7  [2.b1 e {F{xIY, iF alx) , bix) e {F(x)},
Proof The lemmz 15 readiiy nroved by operating on x by
thearem 10.6(1i) and noting that
[E:E}'?E £ = [E:E]“
by lemma 7.3(i7), and
[a-7,» b-7, Jx = [a,b]

by using definition 10.5 and Temma 7.30(1}.

XXRX
Lerma 10.8 If a, B e {F[E)}x , then .[E‘st £ -[F(gc_}}x .

Proof The procf is by inductionon s . For s = 1,
erma 10.8 reduces to lemma 10.7. MNow suppose for s =i that
[5?511 E'{F[E}}E and for s =1+ 1 ,wite B, = b A B,

where b E'{F{g}}; . Then

{E: B'i+l] =[E! .b.ﬁBi.]

theorem 10.2(41i) = [a,b]AB; + {-1}*[:;,51.]@ .
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Theorem 10.9  If A B e PF(&}}E , then [ﬂr,BSJ e {F{x)}, .

.

Proof The proof is by induction on r , for a fixed 5 .

For r =1, [2.B.1e {F{x)}, by the previous lemma, Now suppose
for r=1, [hi,EE] E'{F{E]}x ,and for r=1+1 write
ﬂ1+1 = ﬂi Aa , where ace {F(E}}5 : Then '

(A, B.1 = A2, B.]

theorem 10.2(i1) AAl2,B.] + (-1Y anlA,, B]

Since both terms after the last equality"are in '{F{gg_}}X s

[A.. ., 8. 1e {F(x)}, , and the proof is complete.
XEXX

An alternative proof of lemma 10.38 and theorem 10.9 can
be obtained by using lemwa 10.7 and the following decomposition

_ thearem,

-
Theorem 10.10 (i) [a.B 3= 2. b, A...Aby A

i=) ~1 ==l
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Proof  Since (i) is a special case of {ii}, enly (i) is

proved. The proof is direct.

]

. t
[R..B] = (A9, Ao by AALT - (B, A...A b )]

identity 0.40 _ b,

1=1

i ) ¥
E%. {-1) +T(Ar-ui}ﬂgitgljﬂgl Aok by Auooh B

5 . v
_— _ T1+1 -1.-. |
2 CITIAL) Tyl Ao ohly A b

il (~1)"7[A L0 0Alb, AeA By A.A BT

XXX
Theorem 10.10 is used in Appendix D on differential forms.

An important consequence of theorem 10.9 is that the divergence
of & tangent multivector field on X m is itself a tangent multi-
vector field on X m This is proved in the next theorem using

the following lemma.

Lemma 1031 (i} v, -{anA;) = [V -alx}1A, — anle, A (x)] +

(2,83 » for 2,4 e {Fix)}, -
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proof Since (i} is a special case of (i1), only (i) is

proved.

(1) 7, -(A 28y = [9,-A LX) B(x) + (1) AL B (x)]

identity 0.38

Pl r
WE:E Ar}ﬁBS + {-1} {‘B‘r‘?gmﬁs + (-1} A A

W;‘Es} + (1) B A7, B)

(7, A B + (TRATB) (-1 A8

AXEK

In the proof above ¥, means that the gradient operator

differentiates both ways, and ¥ means that it differentiates only

2 =l

to the lefi.

Theorem 10,12 If A e {F{E}}E , then v5'hr{5} £ {F{E}}i .

proof  The proof is by induction on v . For r=1 the

theorem is true, since V. -2 is a scaler. Suppose now for r =i

il

that ?ivﬁi £ {F[E]}E , and for hi+1 write A, =2 A Ai . Theg
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“gince all terms of the last sum are in '{F(g_}}x , 1t follows
‘that _?E-ﬂi+l E {F{E}}E .

XXKX

b) The Lie Bracket Under the Di fferential Mapping

tet y: U “r’m be an invertible mapping between the
m-surfaces X = and e o - only tangent multivector fields on
K, and 7, are considered here.

The following lemmas are needed to prove that the Lie

bracket is preserved under the differential mapping.
Lemma 10.13  [3-¥,» g-vil = [(y,a) Uy {y,,rg}-?zi

. -.. _ . .:l. .1. .
Proof [g-vﬁ, E.?.’E] = La-¥ ‘FE. b-y ?-l."] using eqn. [9.1)
theorem 9.4 = [{yfg}*vg, {yTE}-?g]

XAKX

Lemma 10.14 ‘?1"[9"9]5 = Ly;a, y_rg]x , for a,be {F{E]}}g .

Proof v, fa.bl, = [g,l,:g]i-v% y{x}
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Lemma 10.15 yﬁtg,ﬂgjﬁ = [vjas 98, for 2. B, < {F{x),

el

Proof The proef is by inductiom on s . For s =1 , lemma
10.15 is Temma 10.14. Now suppose for s = 1 that y?[g,ﬁi]x =

[y+g, ETEi]y and for s =1+ 1 , write Bﬁ+1 =bAB; . Then

y.l.[i! B-i,’_l]?i .}f_l:[ij ?’I!B.i]ﬁ

il

theorem 10.9{i1) v {la,B1iBs + (-1)'[a, B,1rb}

theorem 3.3(1) and . i
Tewma 10.14 - [y,@s 72,85+ (D D2, vBy 50

n

theovem 10.9(11) [y+g, ETEﬂEfBily

theovem 3.3(1) fyfai nyi+1}

b
KRR
It now can be shown that the Liz bracket is preserved under

the differential mapping.

Theoren 10.12  y,[ALBLL = Ly.Ap ¥i8g1, » for

p'-r: BE E {r{‘:ﬁ}}ﬁ
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11. Frames
a) Definitions and Basic Properties
| Let X m be an m-surface in & n

Definition 11.1 A set {e.{x} | i=1, ..., m} of

m-1inearly independent tangent vector fields on '7(“1 is called a
“frame en X -

Once a frame {g.(x}} is chosen on X _, it is con-
venient to construct a reciprocal frame {51[5)} on X m It

is defined below.

Definition 11.2 The reciprocal frame to {g.{x}} is the

unique frame {51{5}} on X " satisfying the relations:
e {x}-e'j{x} = 6‘j For all i,j <m
-ui [ ar P 'i ,J - *

A particularly important frame on a surface is a "coordinate"



'{51[x]} with the property that for each 31{5} € {31(511 , there

is a scalar field ¢1(§J such that. EF{EJ = ?x¢1[5} .

For a discussion of the above definitions, and a construc-

tion of the reciprocal frames, see [11, p. 83].

Theorem 171.4 IF {ET{EJ} is a frame and {giiﬁ]} its

reciprocal frame, then [Ei'?x Ej{ﬁ}]'ﬁt = F.Eii[gﬁ-vx Etfijj'

51

Proof The proof follows immediately from differentiating

&) 1 L[] t = t -
the relationship Ej[ﬁ} e (x) Gj by e, ?E .

KXXX

Theorem 11.5  If {31{5]} is a coordinate frame and

'{gi[é}} its reciprocal frame, then: (i} v, h et(ﬁ} =0
(1) [eg, ¢1 =0

(711) [gi-?ﬁ, gj-?ﬁj = 0

 Proof (i) Since gtfi] is a coordinate vector, there

exists & scalar field ﬁF{x} such that ¢ wt{x) = et{x} . Thus
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(i1} By {i), v 4 gt{ﬁ} 0 . This implies:

= ., t
0= (e 4 ?j}{?g Ae”)
— [ ] L] t — - L] t
e;r(es 7, &) —e5r(ey vy )
theorem 11.5 = — e,V e }-et + (e ."¥ e.}-et
| gt S I
= [E'il'g:l] e .

$ince this is true for each gt{ﬁj z'{e1{5]} , and

{Ei’Ej] £ {F(E}}x by lemma 10.7 , [Ei’gj] =0 for each i,j <m.

{ifi) By theorem 10.6, [51'?§- Eﬂ.vil - [Ei’%d]'?i y

But by {ii} . [Ei*ﬁjl =0. Hence [Ei'?5= ﬁj-?ij =0

n) Representation of the Gradient Gperator
The gradient operator is now expressed in terms of a frame

'{51{51} and its reciprocal frame {e.(x)} . let 1, = e, (x) 4. ..4

Em(E} » and 1;1 = Em{ﬁ} Aoodh 51{5} . By using the identity 0.41,

w1
wg B e AT s memmiy b T =3 — 1
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13
£

identity 0.40 = 2. (-1)(e" A.ag-ley Ald gy AvllBoe )oYy
i=1 ' b
0.

identity 0.42 => e 2.ty
=1 T2 .

AXER

¢) Frames Under Mappings

Let y: 'Km + Y i be an invertible mapping {non-singular

and one-to-one) between the m-surfaces X and e .
let {Ei[ﬁ]} and {Eifgg}} , and {f[:i]} and {fifg}} ,

be frames and their reciprocals on X m and Y n respectively.

Theorem 11.7 (i) {f,(x) = ye;{y)} iff {gf{ﬁ} = y*fﬁ{;}}

(31) {e'(x)

Jr'hl‘f (¥)} -is a coordinate frame on "Xm iff

{f'{y}} is a coordinate frame on qu m

Y =% Crrmmrers Loy SOl 1 £f =y 2. Then



4

- iJ'F+ &4
P
cor. 3.0 = {y f ]'Ei

-This impiies that gq = y+ f? s Since reciprocal frames arve
unigue. By reversing the azbove steps the second half of (i) is

oroved,
{ii) Suppose that '{jf(g}} is a coordinate frame on 'Y I

Then for each 1 there is a ¢1{y} such that ET{y} = ?y v(y) .

But then,
el =y g
_ T i
=Y vgwig}
egn. {9.1) = v,y ly(x)] .

Thus {Ei E.yﬁfi} is a coordinate frame on X I The
above steps can be reversed to show the second half of (if).
X¥XX
Theorem 11.7 shows that frames and their reciprocals “map"
in different directions, and further that coordinate frames when
pulled back remain coordinate frames. The first part of the theorem

is analogous to theorem 5.1 of section 5,
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12. The Divergence of a Field

This section relates the divergehceﬁ of tangent vector
fields on differént surfaces. In addition it gives fhe NECessary
and sufficient condition for the differential mapping to commute
with the divergence gperattion. Fiﬁa11y prupertief‘particu1ar to

a coordinate frame are studied.
Let y: ﬁKnl +—qflﬂ be an invertible mapping belween K m

ard Y . let i, = i{x} bea pséudcscalar field on X - and

=]

i, = y+ix the corresponding pseudoscalar field on dxf n

[

e C o _ s 2 _ s
pefinition 12.1 9y = I1§1 » or G = 11£| :

The 9y 15 called the “density" or volume element of

o

the surface aan at the point % , with respect to the pseudo-

scalar field ix .

Related versions of the following lemma are needed 1n



. B
Lemma 12.2  {i} E'?E gE =2 15_(9 ?5 1£}

" PP SR
(13) a7, 9, =2 (1, 2):(T,01,)

i

Proof The proofs of (i) and (ii) are found in the siring

of equalities below.

M
=1
<

e

+ .
AWy Oy T 27y

- - i -

1
=13
"
]
—

Ly

_ .'1‘. N .
=2 i [E ?E 15}

-

jdentity 0.43 2 [{ita)av 1

sdents -t .
..jdEi‘lt‘itjf 0.42 2 {1§E].{v§.1§] .

XXX

ket alx) E,.'{F{_}g}}x . and define b{y) = y, a(x) E'{F{g}}y

The following theorem gives the divergence of a{x) in terms of

the divergence of P(EJ .

1



But by a version of Temma 12.2{ii),

MV

wall

1 ..
Hxavx gx .

[P

K ix!

On the other hand,

(1, )+ 1)

b .

s o=t
i [?Eﬂig y i M

- et

theorem 3,5{11), I + !
theorem 9.2 i . e

cor. 3.6 : N 12 [vg A (b 1£ )]
identity 0.43 =V bly) #4007, 1;‘}
version of ~ T . N

lemma 12.2(i) = Vyrbiy) Zg, 27y Yy -

Taking the sum of the last two expressions completes the
preof of the theorem.
AXEX

By an easy computation, using the chain rule and the

|1"||1‘|=‘E’— :
Y

jdentd ty

1r

- [x
195 1
theorem 12.3 is equivalent to:

Theorem 12.4 v -alx} = vx-b{g} — a9, |J§m(§}{ , where

57
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A trivial but important consequence of theorem 12.4 is:

Corollary 12.5 ?x-i{ﬁ} = ?y-yTi for each g{%] 5 {F{i1}x

o [

iff jdn {x)| is constant.
Fm ~

Note that ?K-E{E} = ?y-y+g in corellary 12.5 can be written

as [yT ??}-a = ?y-y?a . This is a statement of corollary 3.6 for
. s e 4
the gradient operator. It is now shown that under the same condi-

tions as in corollary 12.5, theorem 3.5(i} can be applied to the

gradient eperater to get:

Theorem 12.6 yT[?E-ﬂr]-= ?g-yT Ar for each r > 1

and “F(E} E_{F{E}}g, iff ldim! is constant.

Proo¥ Because of corollary 12.5 it is sufficient to

show that f+?x'ﬂ{ﬁ) = ?y'yfé{ﬁ} for each a(x) € {F[E}}x implies

i [

that yfva-hr = yyh, for gach r>1,and Alx}e {FEE}}E .

The proof of this is by inductien on r>m . For 1 = 1
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?y-y* A'I+1 =?E‘y+[Eﬂﬁi}

theorem 3.3(i)

vy-(y+§ A ¥AL)

[+

i

I

lemma 10.15 {?5'3}y+ﬂi —yah f+v§'ﬁi + y+[i’ﬂijg

1

theorem 3.2(1) y?{(?x

Ll

~aJA, —-Eﬁ{vi-ﬂi} + La.Ad

Temma 10.11 Y ?x-{ghﬁi] =¥ UL P

XAAX

Nete that any linear mapping y {x) satisfies the conditions
of the Tast theorem,

Now let {gi[ﬁl} be a coordinate frame on "X o and
{51(5]} its reciprocal frame. For the remainder of this section
tet  i{x) = 51{51 Aouoh gm{§} be the pseudescalar field under
cunsideratian.

The pseudoscalar field 1“1{51 = EW(E} . gliij is
called the coordinate pseudoscalar field on X " with respeht to
the coordinate frame {51{5}} )

The foliowing theorem shows that any pseudoscalar field

h(x) on X o s curl free.



v wix) e 1,

Since h{x) and

h(x) = #(x} 1;1 for some
vi A hix) =

theorem 11.5(1} =

Il

Hence ?x h{x)

The theorem given

formulation and proof see

Theorem 12.8 ¥

Proof Ei'? q

£

when ¥(x}

is a scalar field.

i;l are both pseudoscalar fields on X n

ar

gcalar valued Ww(x) . But then

7y b a::fyi;{y

-1

[v, ¥(x)1 A i; + 9(x) frﬁ Ay

?E-h{y +‘T«'5 Ah(x) = ?E.ME} .
XXX

below is well known. For a more usual

[14, p. 130].
o . - A .
rg; (%l zgx "% O T & Y Inﬁg .
29 {e1vx1xj-1 version of lemma 12.2{i}
2q {e.+7.e, A...A e T+[e" A...A el]
g {e; (& Aerehgpllen Aonh g



theorem 11.5(i1)

1
™
[Ta]
I.;\w
fro
[
—
[y}
¥
==
L1
e

thearem 11.6

1l
Pl
(4}
-]
FRq1]

Thus gV, 9= 2g. ¥ -Ei{ﬁ} , The remainder of the proof

iz trivial-
XHNK

Theorem 12.9 The following statements are equivalent:

(i) g, is constant.

{ii} v -e.{x) =0 for sach i <m.

(iif) v +i, =0

Proof  That (i} = {ii) is a direct consequence of
theorem 12.8.
That {i) 3 {941} is a direct conseguence of
a version of lemma 12.2(1i).

XXX
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12. The Shape Operator

The results of the preceding sections require only that
the surfaces under consideration be sufficiently smooth. The
shapes of the surfaces have not been a point of interest. _In this
final section, a "shape operator" is defined, which provides a
measure of the shape of a surface.

Let °X m be an m-surface in (E o and let p = pix)

mt

be a unit pseudoscaiar field on X o

Definition 13.1 tall S{a} = a-9, plx) for each
a a}j; , the shape operator of the surface X o with respect
to the pseudoscalar field p, .

(Note that a unit pseudoscalar field on a surface is unigue

up to an orientation.)

& few basic properties of the shape operator are given

in the following theorem,

Let a(x) . b(x) & {F(‘x_}}x .
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Theorcm 13.2

(i) s{@)ab=-—p 4 [g-vx b} .
(ii) S{ay ab=25(b) ra.

(i1i)  Sla)-p, = 0

(iv) 95 plx,)-ply,) = 0

Proof (i) Since be {F{x}}, 'px Ab=0. Thus,

l

0

3%, Pl

{g-vE PE}HQ + pin{g-vﬁ b)

S{a)ab + gin{g-vﬁ b}

Hence S{a) A b = ~p, A la-v, bl .

(ii) S{a) A b —S(b) aa=—pala-v, b} + pAlRev, &2

- pﬁﬁ‘[E’E] =0,

since by Temma 10.7, [a,bl e YJ, . This is sufficient to prove (i)
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(iv) The proof of {iv) is similar to the proof of
" temma 2.21{i), and is omitted.
XXAX
The shape operatﬁr S{a) is a generalization of the
Weingarten mapping to surfaces which are not necessarily hyper-
surfaces. See [12, p. 21, 77]. The Heingarten mapping is

further discussed in Appendix E.
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Appendix A, Linear Mappings

In this appendix basic ideas of linear algebra are reformu-
lated in terns of the geomeiric Tanguage developed in this paper.
The use of geometric algebra in the study of Tinear mappings makes
the introduction of matrix algebra largely unnecessary.

et y: & N T EEH be a Tinear mapping from £ , Into
E Since the mapping y{x) is from Ein into E -
) ==,2j = ’%jfiﬁ} for all X E Ez . Also £ n " yo i

i.e., vecters which are names for points in & g are identifiad

LEo

with tangent vectors of 1) ' .
In this appendix the mapping y{x) is aTways taken to be

Tinear.

a} bhasic Definitions and Properties

befinitien A.1  The mapping y = y(x) is said to be

linear, provided for all scalars o, B , and points X, X, E:E; ,
-t {

ylag ¥8x,) = ay(x)) + gy{x,).
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Definition A.3 The mapping y = y(x) s said to be skew-

symmetric 1f for all x,» X, € &, » y{x )%, = —x¥().

The following theorem shows that a Tinear mapping is equi-

valent to its differential mapping at each point xe & .

Theorem A.4 If y. is the differential ‘mapping of ¥yix)
at any point x e & . then y.(a) = y(a) forall ae) e E

Proof  ygd = a¥y yX)
def. 2.7 - [g) g, R
= lal s iix
<v( 1l 1 i)
def. 2.7 =y tlgl al = y(a)

XX XX

Lemma A5



- Proof  {i) v, xey{x)

x, € £

theorem

cor. 3.6

6

?El X, y(x) + ?51 ylx %

y.x ¥

(11)  x[9, aylx,)]

it
>

'?EI.F{QEI} —?Elf{g}l]-ﬁ identity 0.39

- .
Yk — ¥ X
XXX
Theorem A.6 The following statements aré equivalent:
(i) ¥{x) is symmetric

(11) y =y

(i11) v, Ay{x) =0 Fforall x e £ .
Froof It is shown that {i) < (i1} ¥ (ii1) .

(13 % (11}, If y{x} is symetric, then for all x,

n$

Il

yix,)ex, =% y(3,})

2.4 =51-y+ X,

H
iy
L
13-

A
"
£
[



(i1} 3 (i31) follows trivially from lemma A.5(ii).

XXXX

Corollary A.7 (i) If y{x) and w{x) are symetric
Tirear mappings, and y-w = wey , then yew 1is symmetric.
(ii) If f{i} is symmetric, then yqfﬁ} = yff...1:1y{5}

is symmetric.

Proof (i} Because of theorem A.6{ii) it is sufficient

to show that {yaw]+ = {y»w]+ .

{gnw}T =Yy ¢ oW, " theorem 4.2{1}
* theorem A.4 = w% - yT
theorem A.&(i1) . whoe yt
theorem 4.2{i1) = (y-w)!

(i1} 1is a trivial conseguence of (i}.

XXXX

The analogous theorem to A.6 for skew-symmetric mappings is:

. Theorem A.8 The fa]Iuwfng statements are equivalent:
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" The next theorem decomposes y{x} into the sum of a sym-
metric mapping and a skew-symmetric ﬁapping. Its proof is an easy

consequence of the preceding theorems, and is omitted.

P2 —

x-y(x) +

™=

Theorem A9 y(x) = x:[v, ay(x,)], where
=1

x

the first term on the right is symmetric and the second term skew-

symmetric.

Definition A.10 Call ?x-yii}' the trace of y(x}.

e

This is equivalent to the definition of trace in matrix

theory.
Theorem A.31  If y(x) is skew-symmetric, then ?x-yfg} = 0,

Proof By theorem A.8, y(x) = % 5~[vx ﬂy{§l)] . Thus,

oy |
_-J— - -
?E'F{ﬁ} =7 YelX [vﬁlhyiﬁl}]}
identity 0.42 = %‘[?xﬁﬁ]*[?xﬁy{i}j
cor. 7.2 = 0.

XXX



then by using theorem A.4 and corpllary 3.6, §1‘3+3+u2=

a.'H X5 X, € Qn . This implies y'l'{:.rfgz} = x, forall x, e En
Con gaes 4o
{ii) = (iii) If YK =X for all x Egn,then
_Ez = E.y-ryrf-a
cor. 3.0 T YXYE

Hence, {'“ﬁf = x* for all x X

Theorem A.13 The following statements are equivalent:

{1) y(x} 1is orthogonal.

1

(i1} f{:.r_r:g} =x forall X EEH

(i17) {yng}* =x* forallx e € .

Proof 1t will be shown that (i) + (ii}*» (i¥i) » (i} .

EEI’I’

(i) » (1) IfF ylx )ev(x,) = x,-x, for 211 x ., x

%, "%, for

n-°

(111) > (1) If (00" =¥ forall x e &, then

n L]

Yi¥1'¥ek, = .If {[y']'{£1+§2}]2 - {‘?TEI}Z N (:f'i‘ﬁz}z}

frt

P T .- ] 2 .

71
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b} The Characteristic Polynomial

Definition A.14  For the Tinear mapping y = y(x} , Tet
ﬁ(ﬁ] = y{x) —xx for each xe £ n » and where X 1s a scalar.

Then the characteristic polynomial of y = y(x) in the variable

A dis ¥(x) = JE , and its characteristic equatfon in the variable
n
A is ¥{ay=0.
[ | i 3
Thagrem A.15  ¥(A) = 2 (-1} [d; 1 a
i=n o

Proof  In theorem 4.3(i{) Jet g(x) = y{x} , and

FIF
.
(]|

h{x} = —xx. Then w{x)
- n

theorem 4.3(i1}

M

?Eiﬂvi ¥ K0T,

i=0 n-1i
yROILY ;7
= -1 Ao AV xLAY_
i=o *p-i Xy TR
identity 0.42 = 2. (-0t vy xay
i=p n-1 "
e . "':g"_ r -.\'i..'i - bl
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Theorem A.15 identifies the scalar parts of the characteristic
multivectors of a mapping as being the coefficients or scalar invar-
iants of its characteristic equatien. By theorem 6.9, these are the

oniy parts when 3{5} is symmetric.

Theorem A.16 A linear mapping y = y(x) satisfies its

characteristic eguation.
Ll

Preof It wust be shown that Vin-yna —-?in-l-yn_lyfﬁ} +

.ot (-I]"yn{g} =0 forall x € E;n . The first term on the
left wiil bhe decomposed inte the negative of the remaining terms.

V2 Yp X7 XV Yy

n h
= ye¥- E,r
st Xn |
theorem 3.4{1) = vin-1§”'1 A y.x
theorem A.4 = Ve oDy, Avi(x)]
n-1
= 1
13, 3E =V- - v A
01, p.33, 3.321 R ¥&) - X (¥,



The Tast steps follow by expanding [Ve  «(y, A...A ¥, Avlly, , and

making repeated use of the fact that Fi{i}'?x yi{x} = y‘+1{5]‘

KXXX

A known result in matrix theory is that the scalar invariants
of the characteristic polynomial of a matrix can be expressed in terms
of traces of powers of the matrix. The final thewrem of this section

shows the equivalent by a recursive decomposition of [J§ I, -
- r

Theorem A.17 For the mapping y{ﬁ} . [Ji b = V.Y s
1.

e

and [0; 1, = Loyl 3, -9yl 1 e (T,

-1 - r-2

n

Proof [J- ], = V= =¥
_ Fr o xr r

I VLt
= . {?xr_lﬂﬁﬁr ey, )

identity 0.38 %-{?x-f v 'Er_l "[{?i 'F)ﬁ?I]'Fr_l}
- Pl r- ~

1

1t

1 = 2, =
r Y T Ve, g ey )

identity 0.40
_ r-t r-2
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The proof is now complete,
XX
The proof of this theorem s almost identical to that of

theorem 6.7.
¢} Invariant Linear Subspaces

Definition A.18 A point set ‘ﬂrc 8n is called an

r-plane of £ h through the origin if there is a 'sim;ﬂe r-vactor
r
I.e X)) such that,

4= dA)=ke £ _|2al =0

r rr r

The simgle r-vector Ir i5 said to define the r-plane

).

As a ¥lat" r-surface in & n » as defined in section 2,
a . has a geometric algebra b‘ﬂr of 2 -dimensions. The
r-vector Ir is a pseudoscalar of ;Ujr . and as such is unique
up to a scalar muitiple. The r-plane § . can also be regarded

as a linear subspace of &£ 0
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addition A # 0, then A is called & proper r-value and If is

calied a proper invariant r-vector.

Invariant l-vectors and 1-values are also called eigenvectors

and eigenvalues.

The following theorem gives the relationships between invar-

jant r-vectors, and invariant linear subspaces of a linear mapping

y{x}.

Theprem A.20
(Y If tﬂr_ is am invariant Yinear subspace, and
tﬂ . cQ{Ir} , then Ir ig an. invariant r-vector.
(i1} If I, is a proper invariant r-vector, then
. r
L = Eﬂ (i) is an invariant subspace, and the mapping y(x}
i r r =

when restricted to . is non-singular.

Proof (i) Since Ir is a pseudoscalar element of

‘Zj‘&r , there are vectors %, ..., %. € &, such that
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theorem A.4 = y{51} AL WA y(ir}

llr .

for some scalar &, since y(x:) e off . for each i, and pseudo-
scalar elements are unique up to a scalar multiple.

(i1) Let x e §. . It must be shown that y(x)e 4o
or equivalently that y(g] f Ir =0 . Since X 'e;tﬂ rr X & Ir =0,

and thus

theerem 3.3(1) YoX A yTIr

theorem A.4 yix} A yTIr ]
But since y.I. = AL whare » £ 0 , it follows that y{x) A I = .
Finally the mapping ¥ = y(x) when restricted to tﬂr, is

non-singular because

d- =
Eﬂr roUx,

n
o
—
<3

1
S
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The final thearem of this apvendix factors the characteristic

polyngmizl of ¥ = y[ﬁ} into the prdduct of characteristic polyno-

mials of y = y({x) when restricted to invariant linear sybspaces.

Let I be a pseudoscalar element of jb » the geometric

glgebra of E; n and suppose I = Ir AlLuh Irk , where Ir are
i i

invariant ri-vecturs of the mapping‘ ¥ = y(x). tet ¥(x) be the

characteristic polynomial of the mapping ¥ ;.y{ﬁj . and tet

?r (A} be the characteristic polynomials of tne mapping y = y{x)
j e -

when restricted to the invariant svbspaces gﬂ[[r ).
1

Theorem A.21 ¥(a)y =¥ {A) oo v ()
S r, ry

Proof Let c{ﬁ] = y(x} —x , Tien by definition,

(1)

?EC

n
n

-1 "

n

R

=1
I {Il" AL A Il“)?;{ C



]

n

1 [Irlyrltk}_ﬂ"'ﬂ Irk?r (x}]

I8 1w (A} ... ¥ (&
r1{ } rk{ }

¥ LA) ... ¥ La) .
p ) ey 00

1

b

k

©XXXX
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Appendix B, Jacobians and Transformations of Integrals

The purpose of this appendix is to show how the methods of
this paper can be used to derive formulas from advanced calculus
relating to Jacobians and transformations of integrals. In part (a)
the relation of the characteristic multivector JE to Fhé Jacobian
is discussed. In part (b) differential statementsmpruved in Fart II

are rewritten as transformation formulas for integrals.

a) The Jacobian of a Mapping
I

Let v: K o 1{m be a mapping between the m-surfaces
Kooand Y in €

tion of the Jacobian than is given in advanced caltculus books.

. The following is a more general defini-

Pefinition B.1 Cali JE {5} the Jacebian of the
m

mapping yix} at the point x .

It wil) be shown below that this definition is equivalent

to the usval definition of the Jacobian whem m=n , i.,e., when

- . - Faid
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E;' n - In terms of this frame the mapping y(ﬁ} can be written as

n n '
y{x) = 2_ yilx) g, » where x= 2_ x e .
1=1

i=1
The following is the usual definition of the Jacobian in

terms of the partial derivatives of its components 31(5} . See

for example [3, p.138].

Definition 8.2 The Jacobian of the mapping y(x) is:

ayl Eyl

Bxl Bxp
J (x = . . *
L) ‘

ayn Byn

Exl Exn

Theorem B.3  HWhen X m and ﬁf m ore n-surfaces in

£

SENOER A

n n

Proof The proof follows directly from the definition of

S = tX} :



theorem 3.3(1) [e, Ao h gll-Eiglﬁﬁg) Baooh {gn-?ix}J

e (e T y) v e s gpre )

identity 0.41

H

gl-{gn-vﬁg} soene s gn-(gn*?ﬁgj

82

= ini] ’ ; b
. By ay ay
o . K 1= K g, =
since Ej [Ei vy ¥(x]] Ej [ :%: 0, Ek] ;§: dX ﬁjk ax,
g -! _ 1
XXX X

The key to the interpretation of J§ {ﬁ} is the following
m

identity: {for m<n )

a1 L
(B.4) Jimfi} = 1EE 1§ vxm Yo 1§ iy

where ix is a directed volume elenent aof the surface XK " at

the point X , and iy

= y+ix is the corresponding directed volume
element of the surface W mw at the point y = y(x} .

In words (B.4} says that the Jacohian of the mapping ytﬁ]
is the ratic of corresponding directed vcliume elements on the |
surfaces.

Fina11y note that



83
Considering the surfaces ?{ . and q{ o to be embedded in
EE h allows not only the comparisen in maghitudes (B.5) , but &

comparison in directions as weill (B.4) .

b} Integral Transformations

_ Let ¥: X a ﬁjm be an invertitle mappjng between the
m-surfaces X o and 1/ a in < o o and let Fly) be a multi-
vector field an Y - (Mote that it is not required that F{z}
be a tangent muitivector field on 'Y )

Property 2.12 is a differential statement of the chain rule.
It caﬁ also be represented in the following integral form: Lei
C, beany (smooth) curve in K rad C y the (smooth)

-t

curve in Y o which is the image af C . under the mapping

(=

y=ylg) .

(B.6) 5 dx+v, Fly(x)] 5 dyv, Fly)
c * C ~
X Y
where dy = dﬁ'?x y[a} iz the differential wvector of arc on the
curve C y correspanding to dx , the differential vector of arc

on the curve C . " (As a reference, see [5, p.367].)

A

i om b L T, . 7 R | A r L



Theorem B.7 g dy, Fly) ='5 di vz ¥, Fly(xils

,
r r

ﬂ-l" Vﬂﬁ

K. = dX 75 y. is the differential r-yector of

where dY_ = ¥
r y

Td T

directed arez on the surface ﬂ; corresponding to d}(r . the

o

differential r-vector of directed area on the sur;r"ace ﬂ; .

L’

Corollary B.8 j Id‘!r'r|- Fly) = _,j |dxr-v£r Erl Fly(x)]

Ay A

(]
bt

Corollary B.9 j |a¥ | F(y) = j |dXf 195 ()] FLygdl,

AT AT

L

where A ) and ﬂﬁ are m-surfaces i me and ‘Vm

-

respectively.

Corollary B.9 is a statement of the change of variables
formula for integrals found in advanced calculus books. See for

exampie [3, p.273].

Theorem B.10 { dY v, F{_;f} = [d}(r-v;_ Er_l F[y(gr]].

84
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Corollary B.11 j Y ?E Fly) = Jd){m ?im Yooy FLr( M s
m
% Al

X

e

whersz ﬂr;: and ‘Hﬁ are m-surfaces in c)(m and q('m

e

respectively.

Corollary B.11 is the integral statement of equatiﬁn (9.6},

the "duai" chain rule for the gradient operator.
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Appendix C. Examples of Mappings

~This appendix provides explicit calculations for two kinds
of mappings. In part (a), mappings are studied which are of the
kind y(x} = w(x) x . where ${x) is a scalar valued function. In
part {b). mappings are studied which are of the kznd ylx} = x + ${§]E,
where w{x} 15 a scalar valued function, and p is a constant

ot

veclor.

a) Mappings of the Kind y{x) = ¥{x} x .
Let y: K m *-*f"l be given by y(x) = ¥{x) x , where
W = ¥(x) is a scalar valued function.
Theorem C.1 For the mapping above, and tangent multi-
r r s
vectors ArEij , and B Eby ,
. -l .
(i) wA =t [A + (A ‘?i‘f*}“ﬁ]
(1) y'B" = 9" [ue” + (V I(xeBT))

(iii} 35
: i

=" [0+ ()]



a7

3
L=
—h
—
—r
e
_4'-{
a8
n
=
>
1

Ir

1 .
T ﬂll_}(ul A...A ﬂlrar

0
=
*1.
|
1

= Ar'[{?ﬁr?r + ¢v5r} A...A {vﬁlw + P vEI)]ir

N PR T-1, ., )
=y Ar_?x X, +y Ar [{?Ep}ﬂvx

Tx_  Ax
r pr THF

L]

theovem 7.4{1) =yTA, ATy K A
- F r-1

theover 7.4(1) =y A, + (A9 )AK].

{ii} is proved in a similar way to {(i).
[11i) 1s proved by using (i) in the identity

Iy E i;lyfix :
ym W -

{iv) is proved by using (i) in (9.6), and the fact that
'J"' =.i .i *

which follows from (B.4).

XXEX

An example of this kind of mapping is the following: Let

y: 23 — {0} ~» ELE be given by y(x) = -lig. (The mapping y(x)
X

is an inversion of £ through the 2-sphere of radius one cen-



88

“Corollary C.2  For the mapping y{gg} given above,

‘. = _‘I_ 3 — i_ - = U
)y = (S I - Zo0md = y'h,

N H' AL
6y = - ()

(311) ¥ =-x v, X . where ~ 35_“ indi-

W=
- ¥

]
-
=]

— ZX XV
[—— 5

cates that the gradient operator is not teo differen-

tigte the X -

oot The proof is a straight forward calculation using

theorem C.T. It is helpful to note that since v, A y(x} =0,

o+
y,rh‘_ =y Ar _.by theorem 6.2.
RAXX
b) Pappings of the Kind y{x) = x + ¢(x) p
Let y: X . ’,«’m be given by y{x} = x + ¥{x} P

where (x) is a scalar valwed function, and is a constant

[ =

vector in B .
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(1) A, = Ao+ (A9, wiAp

(11} y'8" = B + (7 0)alp-B")

i) J- =1— pPy+p vy , wh
(1i1) A P Ew ~ﬂ| E¢ whare

!

1 ' .
p“ e 2} x ° is the tangential component of p to the surfgce X m

EL = p —-p“ is the normal component of p to thg surface ?{ _

) Coq -t . . .
{iv) ?z = Jym {‘G’i Ei(vﬁy}hvﬁ + E" [{vﬁ?}ﬁvij},
where p" and EL are given as in [iii).

Proof (i) Yih, = A Vs ¥

r r — i

1

: 1
Ptr"i"ir T {3(_!+11J1£} h...h {Erﬁprg}

Ap

E = AsVs X Ar.[{vilp}mi ) 1 x._ A

r r=1

theorem 7.4{1) A+ {Ar-{viwll-vi X Ap

F-1 r b

A+ A (T g

theorem 7.4{1)

(ii) The proof of (ii} is similar to (i) .

{ii1} The proof of (iii) follows by using {i) in the



aC

(iv) The proof of {iv) follows by using (i) in (9.8},

the fact that Jc ' = 1.’ i . and an algebraic simplification.

m g ¢

XX XX
An example of this kind of mapping is the following: Let

y;“}dzc_' E,-3+'Y2C 85 be given hy ﬂi}=5+ l+.332p »

B L

where:

(i) %, 1is a unit disc centered at the origin,
(i1} p ds a normal unit vector to the disc K ,

(111} Y , is the hemisphere having X, as its base.

Corollary C.4 For the mapping given above, and tangent

multivectors A e b: , and B Eb; -

() Yl = A — T2 {Ar'ﬁ} P
(i) y'B, =8" ~ L5 xa(pB")
1-x -
1
(i1i) Jd= =1+ P X
Iy 1-x2 *



Precof The proof {s a straight forward calculation using

theorem C.3 . HNote that since p = {}” + pJ- is perpendicular to
K ,> p =0.
w |l
XXX
As a final example of the kind of mapping in theorem C.3,

Tet y: 9}(21:: 83 +'T'EC: E«a be given by y(e) = 5+52E .

where:

(1) K , 1is a plane through the origin,
{7i) p 1is a normal unit vector to the plane X . ?
(iif) ‘Y . {s a paraboloid having e , @5 a tangent

plane at the origin.

Corollary C.5 For the mapping given above, and tangent

r r r
multivectors A, e 2‘_‘,15 and B EijE '

{3} yﬁ_A 'ﬂ‘r t2ZAXP

r

TBr-

I

{ii) y'8" =B + 2 xa(p-B")

(141) J-

n

1 + 2xp

9



Proof

The preoof is a straight forward calculation using

theorem C.3. Again note that since p =p +p s normal to ¥

= -

FXXK

2

92
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Appendix D. Differential Forms

In this appendix the exact relationship between differential
forms and geometric algebra is revealed. The algebraic and differ-
ential operators which are piecewise introduced on differential forms
to enrich their algebraic character, are &171 simpty and divectly ex-
pressed in terms of geometric algebra.tugether with its one vector
differential operator. |

A table of the relationships between the two algebraic

systems is given in the summary of this pzper.

a) Definitions and Basic Properties

The following formal definition of an r-form is used. It

is equivalent to that given in {12, p.5C] vr [4, p.62]1 .

Definition D.1 A differential r-form on a surface °X o

is a function fr{£] which assigns to each point X E ?(m the

£ Twl

L] w

real valued function f; = f fw . ..., Er} of the r vector

varfables w . ... . W ™ . with thefallawing oronertinc:
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j.ed f: is antisymmetric over any interchange of its vector
variables,

. r . . - N
(i1} fx [Eh’ “er s Er} is linear in each of its vector

variables.

Since f: (w,s ... s W]} is a function 6f the r vector
variables w,, ... . W it can be qifferentiatéd by ?ﬁ , the
r
gradient operator with respect to the r-vector variable ﬁr nf-the
tangent m-plane to the surface X - at the point a . Note that
V. # V. unless the surface fKIn is flat at the point X .

r r
pifferentiating ) (8, ... , W) by V- 1is the key
; X .
idea to the following theorem which gives the one-to-one correspon-

dence that exists between r-forms on 4 _ and tangent r-vecter

fields on ﬁ(,m .

Theorem 0.2 (i} To each r-form fr{5] , there is an
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(1i) Conversely, if an r-vector field Fr{E} is given,

cee s V)

=T

then f; [3 Frtﬁj-vi is a differential r-form.

1,
Proof (i} The proof is a direct verification. Let

FP{E} , and V_ E}ij; be given as in the theorem. Then:

™ . T - '1'. | Y
F {E} ”T vr F {ﬁ; . ]
UL (V" Av 39 A.LAV )
R W, T W
7 (w W}
5 “1_! k "'-'f"
identity 0.41 o . r
def. n.élf{ﬂ = 51 L .'tl'?wl Er“'wr fxfh’l' caom)l
theorem A.4 = f: (¥,0 =00 %) .

(i) It is easy to check that fi (¥is oen s gr] =

Fr(x}-vi is a differential r-form.
KXXX
The following are helpful defiritions for giving a geometric

interpretation to an r-form.

Definition 0.3 An r-form fr{E} is said to be simpie

!
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Definition D.4 If Ar and Br are simpie r-vectors,

T
Cal Ll A .E
then cos6 = AF-EI = |A T lr 1 defines the angle ©& between
r r

them. ({See [1B, p.56].}

Thegrem D.2 along with these definitions make the geometric
interpretation of a simple r-form evident: A simpie vr-form
f; {vl, ve b v“} is @ scalar measure of the relative directions

st

of the simple r-vector o= FF[E} and the r-vector variable

]
-

¥ o= v A...A LA In particular, when Ur

= |
wr = E

' . r S
The Grassmann, or exterior product fx A gx of forms

el

r
fx

L

and gi is now defined in the conventional way. (See for

e:ample [12, p.51] or [1, p.55]1.)

. s r, S
Definition D.5 f5 A g5 {31, ¥ Yo e s 3r+5}

AT ST T e (v v



set {1, 2, ... , rts}

The thecrem below gives the simple relationship between
the exterior product of forms, and the outer product of multivector

fields.

r Y
Theorem D.6 I fﬁ (Yo o s ¥l = Fﬁ L and_

s I _
N (¥ s oo s Er+5} Gﬁ W, » where V_ =y A...Ay ., and

W =y Ao i v

r, s _
s "’H‘]- "!"‘l'S a then fux‘ f!l. 95 (El’- Ak A v } -

I8 5 g +
[FE i) GE} EJT i NS}

Proof The proof is an algebraic identity and is umitted._

XXXX

Using theorem .6, the properties of the exterior product
of farms follow gasily from the properties of the outer product of
mul tivecters in geometric altgebra. Some of these properties are

now given,

Theorem D.7 (i} The exterior product of forms is

B11inear.
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"~ Proof Let F; R Gi y and Hi be the meitivectors

. -

correspording to the differential forms f; N gi

y -

, and hi respec-
tively, at the point X £ X _— The proof of the theorem follows
from the following algebraic properties of geometric algebrz, and

theorem D.6. v

(1) The A-product of multivectors is bilinear.

(i1) F} A si = (1) g aFy . (identity 0.45)

r

‘e r s by _ s, a5 t
(ifi} Fi A {GxﬁHx) = {Fﬁﬁﬁﬁ} A HZ‘, .

XXXX

b} The Exterior Derivalive

The extericr derivative d-operator of forms is often defined

in the following way. See for example [12, p.89] or {4, p.65].

Definition D.8 Let fz be an r-form. Then

o

r+1 . v
r T+1 r
LA R S UG AL AU RS

1



v
Ej s means the jth vector Ej is omitted.

The theprem below shows that if Fr{E} is the r-vector
field corresponding to f: » then ¥ A Fr{5] is the {r+l1)-vector

et

field corresponding to df; .

i

r ot
Theorem .9 If f, {¥;5 .oy, ) = Fr(x3°¥ , where

- ¥ _ T .
Vo =y Ah oy, then df (v s y) - EEEﬂF_{g}] Vo o

where ‘u"H_l =¥, MhoLLA Y1

Proof The proof is a direct verification.

Il

[V AFT(0)3v T = [y, Ay, 1 [ AFT(x)]

w1

identity 0,42 Ly B 047 FT ()
1

1
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. _ - 1.+1l' - L[] & r
identity 0.40 = ?2} (-1) LEr+1h-'-ﬂE'ﬂ"'ﬁ31]Ei ?%} Fix

1 -
= qyiEr -
"252; -1y v5[3r+1{§]ﬂ---ﬁgi(§}ﬂ...ﬁ

Hltﬁ}J'Fr{E] + ([; (-1 }'1{31.'?3[37‘“[5]11. ..J‘L\fiﬁ.. .!‘LLI]JJ Fr(§}

But,



100

ria

-
+
i

= _ '|+j e w . . ‘ '
- Z EE; (-1) [Er+lﬂ...ﬂgjﬂ-..ﬂtiﬂ...nxl]ﬂ[xi ?EEJ]
I#
- '|+:| - L . . +
- L (-1} lypy b ...!ﬂ_{jﬂ...ﬂgiﬂ...ﬂgl]ﬂfii ?EEJ] %
1-+J Nt N
(-1} &r+1 ﬁ...ﬂijﬁ...inﬂ...ﬂal]ﬂ[gj.végi]
= 1+:| > -
- E (-1 0y A AT A - AT Ao ay, DaBYg g
- Thus,
rty . - .
(7 AF () 1+ wi= X (-1 yew, Ly 08 A% ay, (0TF (x) #
1=1 e
2 1}1+J{[v ..ﬁEjﬁ...Afiﬁ...ﬂgl]ﬁ[gi,xj]}.Fr{ﬁ}

i<]
s ST iy
= dfé (4o wer 0 Yy}
RXAX

The foliowing properties of the exterior derivative of
forms follow easily by using the previous theorem, and corresponding

properties of ?x

L)

—_— o o rr = and n5 mm e Errne am X Hhen
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(i1i) d(df)) =0 .
Proof Let fg (¥,5 +ov s ¥) = F(x)VT, and
gi {31, ver Es] = 55{5}-H: . where FP{E} , and GS[EI are the
corresponding mul tivector fields for f£ and g; given by theorem
D.2{9i). The proof of the theorem follows from the properties of
the gradient operateor listed below:
(i) ‘Fxﬂ[Frfg} + 6 (x)] = Yy Frx) + Ty A G‘"{;}. :
(i) v AF(x} A 6°(x)] = [o aF" ()] 2 65{5]
+ (=17 Fx)alv, 6% ()],
(111} v,alv, A F'(x)] =0 . {property 2.13)
KXRX

¢) The Contraction Operator

1
The contracticn operator CE » for v Elij x ! is a mapping
of r-forms into (r-1)-forms. It is defired below. (See [12, p.91]

or [4, p.69] for an equivalent definiticn.)



102

Let f; be an r-form, and F; be the corresponding r-vector

Lo -

field given by theorem D.2.

r - Py T
Thegrem D.12 CE fﬁ (¥ v n v )= [g-Fi]-¥r_l ,

*>

ANTETIR S PP P
Proof [E.FEJ.UT-I = FEv(Hr_lﬂg} identity 0.42
_ g
= fﬁ (v: v, ' ¥

XXXX

The following theorem giver the basic properties of the
contraction operator Cv . The proof, which is omitted, follows

easily by using theorems D.2 and D.i2, and algebraic properties of

geometric algebra.

r 3 ' ¢ )
Let fE and -;|5 be forms on X i Then:

Thegrem D.13

(1) ()" fy =0

.- r Sq _ p gr 5
{ii} Ei[fﬁ + gé] = EE fE + CE gﬁ



d) The Covariant Derivative

The covariant derivative operator D1Hr for ve jtj; s 15

-

‘a mapping of r-forms into r-forms. The definition for it given

below is equivalent to that found in [12, p.94].

Let f; be an r-form on the surfage. X _ and Tet

[
-4

¥ Edzjx . Then:

r =y r
Definition D.14 DE#E (Vs ven s Yol =yv fi (¥ {x)s ..s

et

ST :
HF{E}] _i‘=l fa [El’ LA . E.i_ll!‘ E véi.i{‘%}! x_i_l‘_l: A g :':'I""} -
r I r . .
Let fﬁ (Vs vov s ¥ = Fﬁ'vr , where F35 is given by

theorem D.2(11}, and V=V (x} = y (x} A...A y (x) . The next

-
theoram relates the covariant derivative of a form to the divec-

tional derivative of its corresponding multivector field. Iis

proof 15 an easy consequence of the identity

103
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Proof

[y-v, FU-VE = wr, L) Vi00] = FTe[y-v, Vi)

Hr

r
D? fx ?

' L

using the identity given above?'and definition D.14.
XEXX
e) The Lie Derivative
The Lie derivative Lv i% a mapping of f-furﬁs inte r-forms.

I[ts definition is given below. See [12, p.93] or [1, p.641.

Definition D.16 L f: (¥ s vee 5 v )= wv, £ (v {x), .

fa
£

v [x}} — EE: fr [v s wer 2 ¥ _f: [v,v.]s v,

=1 &

Theorem D.17 (i) L.l {y,» oo b ¥,) = E-ERLFrtﬁ}-fi{a}j

—F )Ly v 3T, where £5 (v oo oy = POV and Tyv D

L

is the Lie bracket on multivector fields defined in section 10.

1 P . r MLyt
[11). L f, =1¥ vE FE + ?ﬁlﬂ[g{al) Fi]} V..

[



BT

r
v, Fx) vl — 30 FT(x)ly, A
- 1=1

,_
<
B =5
———
T
-
"
LJ
-
e
1

1
ooy ADGY A Aay T

theorem 10.10(7) vev, Pl vl — e7(e) Ly,v 37

(ii) Tollows from (i) by the short compufation given below.

+ + ' . -

. r oy T T
v ?E Fixyv () —F [y vy V(x)] +

: r T-
{?Elﬁ[z(zl} *F ]Z}.'.‘rr

Ay, F™{x) + 'vﬁlg[gial)-ﬁ‘]}-vr*
- . ) XXXX
Well-known properties of the Lie derivative are given in
the next theorem and are proved using theorem 0.717. Let

: y 5 5 T
f: {¥3s vvn s ¥l = Fr[g}'vr , and 9 " G (%)W, , then :

-

. ro_ r r
Theorem D.18 (1) LE'FE = EE de +d E'.".fﬁ .

1.9 N ofr . | T = T ™



LAmmEAEY, LA —(E&vfﬁm] gmqﬁﬁﬁh11+wé%gﬁhrt%ﬂiﬁﬁ
. by =

v i’ T
{y: v F{x) -T-?EIME(EI} Fr13-vy

theorem B.37(11) szg (¥,5 vor > ¥},

-1
The proofs of (i) and {(iii) foliow from (i) by using the

properties proved for Eu and d in theorems D.10 and R.12.

P

KEXX

f) The Pull Back of Forms

ety + Y - The mapping y = y{z) induces a

*
{inear wapping y called the “pull back,” of r-forms g; on the

: *
surface 7 into r-forms ¥ g; on the surface X m The fol-

K

* .
lowing defimition of y is equivalent to that given in [12, p.53].
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'Pruuf

4 r
(i) Cy dfy +d Cy

R -

£
&

(W L7, (0T + v ALy () Fr) 33-v]

identity 0.38 Hyv, Fr{x) -9, ALV-F{x,)] + ?XH[EEE}-FP{EJJ}-V:
- —'1 o

{g-vé Frix) + vl(lﬁ[giﬁl}-Fr]}vU:

thegrem D.17(i1)

1l

- .
Lgfx {31’ car s 3r] .

wr

The proofs of (ii1) and (i1i) follow from (i} by using the

properties proved for ¢y and d in theorems D.10 and D.12.

o

KXXX
f) Tha Pull Back of Fofms
Let- y: L 0 a'd « + The mapping y = y(x} induces a
Jdinear mapping y* called the "pull back," of r-forms g; oh the

surface ﬂf

. ¥ p
. into r-forms y g, on the surface X o+ The fol-

*
lewing definition of y is eguivalent to that given in [12, p.53].

Pl wcdhten M 10 LAY L S B 1 I L T T L R ST
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r . r -
Let the r-form 9y be given by 9, (M0 cea s yr} =
Er(y].wi , where Hr =Y Aochod and 6"{y) is the r-vector

fieid for g; given by thecrem D.2.

*
Theorem D.20 ¥ g; [gl, cee s Er} = [yfﬁrix}]-v: , where

+
.
GE'[ETEI Aceeh vyl

Proof y g (¥.o e s ¥ )

11

' . r t
theorem 3.3(i) ﬁy»[yT{El AoA gr}]

vt
By iy

-

cor. 3.6

taly 4,
(¥ ﬁz}-vr
LXEX

*
The following properties of y  now follow easily from

.1..

the properties of y , and the preceding theorems of this appendix.

Theorem 0.21 Let f; and .g; be forms on q{ K Then,

F 3 +* *
(i) vy {f; + g;] =y f; + ¥ g; , for r =35 .

L T — - [ —
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Appendix E. The Intrinsit Gradient and Curvature

Throughout this paper the tangential gradient has been used.
In this eppendix another gradient calied the intrinsic gradient is
introduced. The relationships between the gradient V on EET],
the tangential gradient 9, on X, and the intrinsic gradient

?x on X m 2re studied, and a new formulation of the Gauss cur-

T

vature equation is given.

a} The Gradients V7, ?x and ?K

- L

Let A . be an m-surface in E .

The gradient ?x on the surface X " is related to the

gradient ¥V on EE'H by the following equation:

(E.7} Vo= ¥ +V, ,where V =7V

!

i

Fquation (E.1) shows that if the gradient 7 of & s
decomposed inio a tangential component ¥, and a normal component
'V, to the surface X n @t the point x , then ¥  is the tan-

gential component.

The identification of V_ as being the tangential component
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surface X n 2t the point x .} However, it differs from ¥ in
one crycial respect, and that is it doesn't preserve tangent multi-
vector fields on X ot L€ if F{x) 1is a tangent miltivector
fiald on E: n then ?F(E} will be also, but if F{E} is a tan-

gent multivector field on X . v F(x} will in genera) have both

m

tangential and normal components to the surface X _
The following equation decomposes vxFEE} into tangential

and normal components, and at the same time identifies the intrinsic

gradient applied to F[f} .

(€2) 9, Flg) = [nF1, + [r,FO0T,

where ﬁfoﬁj z [?xF(E}J
In words, (E.2} says that if ?KF{E] is decomposed into
tangential and normal components to theﬂsurfaces X m at the point
X , then the intrinsic gradient of F(EJ is defined to be the
tangential part. _
Thus where ?xF{E} suffers the "defect™ of not preserving

tangent fields on X . p, rvemoves this defect by "throwing

X
awzy"” the normal part to the surface.

A more formal definition of g in terms of Vy is now

e [¥]

qiven.
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Important special cases of this definition are:

il

.’...
v, -bF(x,0-p, p,1

vy lan r

(E.3a) ¢, -Flx)

(E.36) £ AF(x) = v, ALF(x,)-p, p]]

_]...
£

1]

(E.3c) Ayt Flx) Ar-wél[F{al}-PEJp

T
(E.3d) ArﬂFE F{x) ﬂrﬂ?ﬁlfF(EI} pﬁlpﬁ

The theorem below relates properties of the intrinsic gradient

X

L

¥, to properties of the tangential gradient ?x .

Let {ArfBS] denote the Lie bracket operation defined in

section 10, but with respect to the intrinsic gradient.

Theorem .4 (1) ¥ +F(x) = ¥ +F(x)

I

(11} [A/B.] = [A.BJT, for A, B e'{F{E}}E

(111) a-v, Blx) - a-p, blx) = — [bas(a)]p]

X =%

for E{E}’ 9{5} E'{F{E}}x » and where S(E} is the shape operator

defined in section 13.

Proof (i} The procf of (i} follows immediatelv from
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r = - a— r - - r+1
vﬁ {APABS} {?E Ar]ﬁBS + 1] Arﬂ{vi BS} + {-1) [Ar’Esj .

The same decompopsition applied to I‘!“x gives

L

r+1

P o(AMB) = (F, oA JAB. + (-1)TAAGF B + (-1)"'[A /BT .

it

But by (i}, ﬂﬁ.{AFﬂBS] ?5.{Arﬂﬁs] . ﬂx-ﬁr =V AL and_

T T

ﬂx-Bs =v B . Hence it folilows that [hrfﬂs] ==[Ar’35] .

L) -~

(ii1) 27, b{x) —a-®  blx)

= E-vf‘: E{EI}'PE F'; + E'?El E(El}f&PE P;E
—E-}’?E b{x)
def. E.3c =2V, Efﬁl}“PE P;
theovem 13.2{1) ='——[§ﬂ5{gl3pi
XXXX

Part (i1} of the Jast theorem shows that the difference
between the tangential and intrinsic directional derivatives of a
vector field is completely determined by the shape of the surface.

(See [12, p.75] for a similar result.)



and deffnition E.3.

Theorem E.5 ﬁﬁﬂﬁa

where F(x) e {F(x}}, , and

Progf ﬁihﬂﬁ F(x)
def. E.3
def, E.3

property .13

theorem 73.2(i1i), (iv)

113

F(x) =z [F(x)-plx, )10 {x,),

p{x) 1is a unit pseudoscalar field.

}
= ?Ewi [F{x}-p{x}]-p (x)

1,49, [F(x,)p()]+p' ()

Anr

T T [F(x,)p(x)],p (%)

- -

I

%, [F(EI)'P(EZH'PT(;}

%, [F(x,)-p(x, 1P (x,)

+
- [F{x)-p(x,)1p (x,)

v, Fx) [nlx,) 0" (x,)]

vy TR px, )30 ()

ve  [F(x)+p(x,)1-p'(x,) .

XXX

Theorem E.5 shows that Fxhﬁx F(x) 1is complietely deter-

mingg by the shape of the surface, and is independent of the field



114

Corotlary E.6 ﬁxﬂ#x vix) = -%— ?iz g-[p{gl] ﬁpfgz}]bi .

where 3{5} E'{F{ﬁ}}; , and "bi" stands for bivector part.

Progf The proof is an algebraic simplification of theorem

" E.5 with F{E} = 3(5} .
XEXY

The following definition for curvature is analogous to that

given in [12, p.59] .

befinition E.7  Call R(a,b)

{gﬂg}-{ﬂﬁﬁﬁx] the curva-

1
ture operator of the vectors a , b E‘ijx :

hpplying theorem 10.6{1) to the intrinsic gradient ?x

gives the following identity for R{a,b) , when a(x}, b{x) E'{F{EJ}x
. b

{E-E] R{E:E] = [E'?E: E-FEJ - {E’E].E’E .
Applying R{E,E} to a vector field E(E) and using corollary

E.6, gives a form of what is known as the Gauss curvature equation

for & surface in & N (See [12, p.761.)



.ﬂr_u_ej_ The proof is direct using corollary E.6.

It

R(a,b} v = (bha)-(¥ 4% ) v{x]

.
cor. E.G {thl*?iz velplx ) ' (3,03,

| —d

v-Isth) sT(a) —sta) T3,

o=

fl

[s(a} S'(B)L,oy .
XXX

Firally theorem E.9 will be applied t.n a hypersurface
X et of & n show more clearly the relationship of this
theorem to more usual formulations. Let I be a unit pseudo-
scalar element of £ n > then 5{35} = p{E]I is an orthonormal
_
The following definition and theorem are given in [12, p.77].

- vector field to e

Definition E.10 a L(E} =av, n-= 5(a) I  the

Weingarten mapping for a clj; .

-

‘Thegrem E.11 For the hypersurface X -1 *

R(a,b) ¥ = v-L(b} L{a) — v-L{a) L{E]

-
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- [L(a) A LTy
jdentity 0.39 = veL{b) L(a} —v-L(a) L{b) .

XXXX
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