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Introducing the notions of vector and bivector differentiation into the Dirac algebra, considered
as a Clifford algebra, makes possible an extremely concise and geometrically transparent
treatment of the curvature tensor and its properties, and of related topics such as Lorentz
invariants, characteristic equations, Petrov types, and principal null directions by explicit

construction.
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INTRODUCTION

The Riemann curvature tensor is the crucial geometric
ingredient in the study of general relativity. It is for this
reason that the curvature tensor and its properties and invar-
iants have attracted wide attention. The original classifica-
tion of the curvature tensor for empty space was carried out
by Petrov' using matrix methods. Subsequently, a number of
different methods and refinements have been introduced.
Noteworthy of mention is the spinor approach used by Wit-
ten,? and later refined by Penrose? in his systematic study of
the coincidence patterns of the four principal null directions.
But, as anyone who is familiar with calculations with spinors
knows, these methods are only adapted to certain kinds of
problems. Classical tensor methods have also been used with
some success, for example,” but the computational aspects of
this approach are formidable. Thorpe® notes that computa-
tions are considerably simplified by using the Hodge star
operator to make the space of bivectors into a complex Eu-
clidean space, but he ignores the possibility of utilizing the
underlyng Lie algebra of bivectors. Stehney® modifies
Thorpe’s approach to the requirements of matrix methods
and produces a classification scheme based on the minimal
polynomial of a complex 3 X 3 matrix, but her methods lack
conceptual clarity, and her algorithm works only for repeat-
ed principal null directions.

The purpose of the present work is to cover much the
same ground as the above authors, but in a coordinate-free
formalism whose power, simplicity, and geometric transpar-
ency have yet to be recognized; a formalism which has all the
advantages of each of the above mentioned approaches, and
the defects of none.

In Sec. 1, following Hestenes,”® we introduce the 16-
dimensional Clifford algebra called the Dirac algebra of
space-time in agreement with the name given its matrix re-
presentation. (Clifford algebra of 2 "-dimensions has been ex-
tensively developed in the book, Clifford Algebras and
Geometric Calculus: A Unified Language for Mathematics
and Physics,® using an abstract approach,'® rather than a
matrix representation such as is used by Cartan,!! and oth-
ers). The even subalgebra, consisting of scalars, bivectors,
and pseudoscalars of the Dirac algebra, make up the Pauli
algebra of space. The Pauli algebra can be fruitfully com-
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pared to the popular Gibbs-Heaviside vector algebra, be-
cause many identities of the former are the “complexified”
versions of the latter. A discussion of bivectors and null bi-
vectors is given, and a multiplication table of basis elements

is included.
In Sec. 2 we complement the algebraic machinery intro-

duced in Sec. 1 by introducing the operations of vector and
bivector differentiation. These operations simplify and gen-
eralize the operation of contraction in tensor algerbra. They
were originally developed as a coordinate-free tool for the
study of linear transformations in Ref. 12.

In Sec. 3 we study general properties of linear operators
on the space of bivectors by decomposing it into the sum of
dual and antidual operator parts. A dual operator is equiv-
alent to a general linear operator on a complex three-dimen-
sional Euclidean space. Using the new method of bivector
derivatives, the determinant, characteristic polynomial and
Cayley~Hamilton theorem are derived for dual operators. In
our approach it is unnecessary to introduce the Hodge-star
operator, because in the Dirac algebra duality is simply ex-
pressed by multiplication by the unit pseudoscalar element.
Finally, we show that an antidual bivector operator can be
expressed entirely in terms of two symmetric trace-free vec-
tor operators. In another paper'® we show how the problem
of the classification of these symmetric vector operators is
directly correlated to the Petrov classification.

In Sec. 4 we give a complete classification of dual opera-
tors based on explicit construction of their principal null
bivectors. The classification of a dual skew-symmetric oper-
ator is equivalent to the classification of an electromagnetic
field by its principal null directions. A dual symmetric oper-
ator with vanishing trace is equivalent to the conformal cur-
vature tensor. The Petrov—-Penrose classification of dual
symmetric operators is carried out by construction of its four
principal null bivectors, based on a new canonical form in-
volving a complex scalar, a bivector, and a null eigenbivec-
tor. This new canonical form provides a simple geometric
criterion for the various coincidence patterns of the four
principal nuil directions. In addition, it makes it trivial to
give simple examples of conformal curvature tensors of any
desired type.

In Sec. 5, curvature invariants, which are complex sca-
lars, are defined in terms of the bivector derivative, and it is
shown that a curvature operator has nine complex Scalars,
three of which are real. When the extra Bianchi identity is
imposed, these 15 real scalars reduce down to the well
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known 14 real invariants of the Riemann curvature tensor.
Various well known properties and identities of Riemann
curvature are then derived in the spacetime algebra (STA):
formalism. In each case the simplicity and geometric trans-
parency of our methods are apparent. A table is included
comparing the appearance of well known formulas in the
tensor, STA, and spinor formalism. We believe a close ex-
amination of this table and the methods of this paper will
show the judgment of Misner, Thorne, Wheeler'* (p. 1165)
that “the spinor formalism is a more powerful method than
any other for deriving the Petrov—-Pirani algebraic classifica-
tion of the conformal curvature tensor, and for proving theo-
rems about algebraic properties of curvature tensors,” needs
reexamination. See also Ref. 13.

1. SPACE-TIME ALGEBRA

Let x be a generic point in spacetime. Following Hes-
tenes,’ we select a set of orthonormal vectors e, e,, ,, €3
tangent to the point x, and subject them to the rules:

ed=1Le=e=e= -1, (1.1)
for uwy=0,1,2,3 and uv. (1.2)

The orthonormal vectors | e, }, under the rules for geometric
multiplication (1.1) and (1.2) generate a real Clifford Algebra
of 2* =16 dimensions called the Dirac Algebra & in agree-
ment with the name given its matrix representation. Symbol-
lically we write & = Do+ D+ D+ D+ D4, to €x-
press the Dirac algebra Z as the sum of linear subspaces of
scalars, vectors, bivectors, trivectors, and pseudoscalars, re-
spectively.

For purposes of orientation and fixing the notation that
will be used here, let us review some of the basic operations
and identities in Z. Let a, b be vectorsin & ,,

3
a=a'e,=Y a'e,, b= B,
u=0

e, = —e.e,

then
a-b~=_§(ab+ba)=a°,3°—a‘ﬁ'—0'232~61333§g(a,b)
(1.3)
and
a Ab=l{ab — ba)
2,0
'Blﬂo ey Aey+ B8° e;Neg
3 .0 3.2
+ BB° esNeg + BB2 esNe;
a] 3 aZ 1
+ g g e Ney + Bzﬁlez/\e,. (1.4)
From the definitions (1.3) and (1.4), it is clear that
ab = l(ab + ba) + Y(ab — ba) =a-b+aAb,  (1.5)

i.e., the geometric product of two vectors can be decomposed

into the sum of an inner product or (real) scalar part, and an

outer product or bivector part. The metric tensor g(a, &) of

spacetime is determined by the inner product and is, of

course, invariant under local Lorentz transformations.
Define the bivectors

E =eNeg=e, E,=e,Ne,, E;=e;Ne, (1.6)
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E,=e3N\e,=eye;,, Es=e e,

The unit pseudoscalar 7, defined by

E,=¢)\e,.
I=eyNe Ne,Ne; = epe,e,e; = E\E,E;, (%))
has the property 72 = —1, and assigns a unique orientation
to the Dirac algebra & . The duality of the bivectors E,, E,,
E, and E,, E;, Eg has the simple algebraic expression

E,=IE, =FEl E,=IE, E,=IE, (1.8)
Note that the bivectors E,, E,, E; satisfy the following rules
of multiplication:

El=E}=E}=1 (E}=Ei=Eil= —1), (1.9

EE = —EE, for i=j=123 and i#j, (1.10)
and generate a 2° = 8 dimensional Clifford algebra called
the Pauli albegra &, which is the even subalgebra of &
consisting of the scalars, bivectors, and pseudoscalars.

Operations similar to (1.3) and (1.4) can be defined in
the Pauli algebra &. Thus, let 4, B be bivectors in & ,, then

3
A=adE=Y a'E, B=B'E,
i=1
where @’ and ' are “complex” scalars of the form
ai=a¢i+aui1 and ﬂi:BIi+6niI
and / is the unit pseudoscalar defined in (1.7). Now define:

A°B=YAB + B4A)=a'B' + &’B* + a’B>
=G (4,B) (1.11)
and
(12 3
AXB=LAB — BA) = s ﬁ3IE, 3ﬁ1lIE2
2
aa g (1.12)

From (1.11) and (1.12) it follows that

=B + BA) + J(AB — BA) = 4°B + AXB,
(1.13)

i.e., the geometric product of bivectors can be decomposed
into the sum of a symmetric product, or complex scalar part,
and a Lie product, or bivector part. The metric tensor
G (A,B) defined by the symmetric product (1.11) turns the
space of bivectors &, into a complex Euclidean space, as is
noted by Thorpe,® and like g(a, b ) is Lorentz invariant.
The operations A°B and 4 X B in the Pauli algebra can
be expressed entirely in terms of the operations {1.3) and (1.4
in the Dirac algebra. Thus, let 4 = e Aband B = c Ad, then

A°B = A4-B + A A B = scalar + pseudoscalar  (1.14)
where
AB=(aAb)(cAd) = (a-d)(b-c) — (a-c)(b-d),
a’ a' & &
/J)O ﬁ 1 B 2 ﬂ‘s
AANB=aAbAcAd= 1,
s
P L Rl
and
Garret Sobczyk 334

Downloaded 01 Mar 2008 to 189.128.56.194. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



AXB=(aAb)X(cAd)
=aA(b(cAd)) + (a(cAd)Ab
= (bc)aNd — (b-d)aNc
+ (@c)d Ab — (a-d)c\b.

Note also the duality relations

I(A-BY={A)AB and I(AAB)=(A4)B (1.16)

between A-B and 4 A B.

There are two triple products in the Pauli algebra &
built up from the symmetric and Lie products. They are giv-
en by

(1.15)

al & o

(A4 XB)eC= |B! B* B3|I=Ao(B XC) (1.17)
Yy
and
A X(B XC) = (4°B)C — (4°C)B. (1.18)

From (1.17), it follows that three bivectors 4, B, C are linear-
ly independent over the complex scalars iff their triple prod-
uct (1.17)is nonvanishing. The identities (1.11), (1.12), (1.17),
and (1.18) of the Pauli algebra obviously parallel their
Gibbs-Heaviside vector algebra counterparts, and this sug-
gests that the former are in some sense the “complexified”
version of the latter.

We conclude this section with a discussion and classifi-
cation of bivectors.!! A bivector B is said to
be simple if

B?’=B.-B+BAB=B-B, (1.19)
i.e., B? is a (real) scalar. The bivector B is said to be null if

B?=0and B#0. (1.20)

A simple bivector can always be factored into the prod-
uct of two anticommuting (orthogonal) Dirac vectors, i.e.,
B =ab = — ba. A non-null bivector C 0 can always be
uniquely expressed in the form

C=pe™A, for p>0,0<f<2m and 4% =1, (1.21)

and a null bivector N can always be uniquely expressed in the
form

N=p(l +A4,)4,, p>0,and

At} =A}=1, and 4,4, = —A4,4,. (1.22)
To prove (1.21), note that we can define p’e*’°=C?5£0, and
A = p~—'e°C, from which the required properties easily
follow. For the case of the null bivector NV, there exists an
orthonormal basis a, related to the orthonormal basis e,
of (1.1) by a proper Lorentz transformation, which satisfies:

N = pan = pa,(a, + a,) = paapaya, + a,)
— pAs(1 — ) = pl1 + 4,4,

(1.23)

where n = g, + a, is a null vector, 4, = a, Ag, = a,a,, and
A, =a,Nay = aya,.

The following is a multiplication table for 4,, A,, 4 12
=A,A,, and a null bivector N = (1 + 4,)4,:
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A, A, A, N

A, [ 1 4, A, N

A, | -4, 1 — A4, 1—4, .(1.24)
A, | —4, 4, -1 — 144,

N | =N 1+4, —1-4, 0

2. VECTOR AND BIVECTOR DIFFERENTIATION

Two notions of differentiation are fundamental to the
methods of this work, the vector derivative d,, defined for
differentiable & -valued functions of a vector variable
[D ,—, and the bivector derivative 3, defined for differ-
entiable functions of a bivector variable F:% ,—< . The vec-
tor derivative is characterized by two properties:

Jdp behaves algebraically like a vectorin & | . 2.3)

a-df =a-d,f ()=(d /dt)f (v + t2)|, _,. 2.2
The bivector derivative is characterized by two similar prop-
erties:

Jp behaves algebraically like a vector in & ,. 2.3)

AOF =A4-9, F(B)=(d /dt)F(B+tA4)|, _,. (2.4)

We shall not be precise in specifying conditions for vector
and bivector differentiability, because we shall be concerned
here only with derivatives of linear functions, which always
exist.

Because of property (2.1), d, can be expressed in terms
of the orthonormal basis {e, } by

0=d, = epeyd, —e,e,-9, — €,¢,.9, — ese5d,.  (2.5)
Simple but important formulas for the vector derivative are
a-dv=a = dva, 2.6)
=4dv=4 and IAv=0, (2.7)
aAdv=3a=26vAaq, (2.8)
I, N, uhNv=12=4,d,ulv, 2.9)

which can be easily derived from (2.1), (2.2), (2.5) and alge-
braic identities from Sec. 1. For example, to prove (2.6), note
that

a-d,v=(d /dt)v + ta)|,_, = a.
Identity (2.7) follows by using (2.5) and (2.6) to get

3,V = eyeyd, v — €,6,-9,V — €,6,:0,v — e3e5:9,v

=e) —e] —e2 —e2 =4

Identity (2.8) then follows by using (1.5), (2.1), (2.7), and
(2.6) to get

alNodv=adv—a-dv=4a —a=3a.

Because of its property (2.3), the bivector derivative 3,

can be expressed in terms of the orthonormal timelike bivec-
tor basis [ £, } by

d=0dy =E\E,°0dg + E,E, 209y + E;E,°3,. (2.10)

Simple, but important, formulas for the bivector derivative
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are

AOB =A =3B A, (2.11)
ANOB= —I(I4)0B =A = 3BAA, (2.12)
A°dB = A-9B + A \NOB = 24 = 3BoA (2.13)
OB =63 °B =6 and X B =0, (2.14)
A X3B =44 = IB XA, (2.15)
95 X344 XB =24 =3,3,4 XB, (2.16)
8¢ 035 X3,A XBoC =48 @2.17)

=0:859,4 XBoC,
and these formulas can be derived from (2.3), (2.4), (2.10)
and the algebraic identities in Sec. 1. For example, to prove
the left-hand side of (2.11), use definition (2.4) to get
AIB={/dt}B+1tA)|,_o =4|,_, =4.
The left-hand side of (2.12) is a consequence of (2.11) and
(1.16). To prove the right-hand side of (2.11), we use (2.10),
(1.14), and what we have just proved, to get
0B-A = E \E°dB-A + E,E,00B-A + E:E;°dB-A
=E\(E,d — I{UE)-d)B-A + -
=E(E;A—ITIE)A)+ -
= E\E,°A + E,E,©4 + E,E;04 = A.
The right-hand side of (2.12) now easily follows from the
right-hand sides of (2.11) and (1.16). Finally, to see that (2.16)
is a consequence of (2.14) and (2.13), first use (2.3} and (1.14)
and write

A XIB = AGB — A°9B = 64 — 24 = 44.

There is a close relationship between the vector and
bivector derivatives of a linear function F(B). It is given by

3zF(B)=0,Nd,F(B)=19, Nd,F(ulv), (2.18)
where B = Ju Av. This relationship is checked for the identi-
ty F(B) = B by comparing (2.9) and (2.14). The vector and
bivector derivatives, and their natural generalization to 2 "-
dimensional Clifford algebra were originally developed as
coordinate-free tools for use in linear algebra and differen-
tial geometry in Ref. 12, and since have been extensively
used in Ref. 9.

3. BIVECTOR OPERATORS

By a bivector operator F (B ) we mean a linear bivector-
valued function of the bivector variable B. If in addition F
satisfies

F{IB)=IF(B), (3.1)
we say that F is dual. If instead F satisfies
F(IB)= —IF(B), {3.2)

we say that F is antidual. A bivector operator can always be
split into the sum of dual and antidual parts, as is evident in

FB)=S(B)+T(B) (3.3)
where
S(B)=\[F(B)—IF(IB)],

and
T(B)=\[F(B)+IF(B)].

Using formulas (2.11), (2.12), and (2.13), we calculate
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derivatives of F'(B ), finding

AOJF = A03dS + A°dT =25 (4), (3.4)
since

A0dS = S(4°9B)=125(4) (3.5)
and

AodT =T(A-0B)— T(4A\JB) (3.6)

=TA4)—-T(4)=0.
From (3.4) and {2.13) it follows that
OF = 13,A°9F = 3S = d°S + I X §, (3.7
which shows that the bivector derivative of F is completely

determined by the bivector derivative of its dual part. As a
consequence of this, it follows that

T =0, (3.8)
i.e., the derivative of an antidual operator vanishes.

Anoperator F (B )is said to be symmetric{with respect to
the metric g) if

F(A)B =A-F(BX>F(A4)=F'A4)=d,F(B)A

(3.9

and skew-symmetric (w.r.t.g) if

FA)B= —AFB)>FAd)= —F'4). (3.10)
Differentiating the first expressions in (3.9) and (3.10) by
3,98, gives, with the help of {2.11),

X F=Y0F —F3)=0
and

§oF = J(0F + F3) =0, (3.12)
respectively, where 5 differentiates to the left. Thus, sym-
metric operators have vanishing cur/, whereas skew-sym-
metric operators have vanishing trace. Symmetric bivector

operators are known in the literature as curvature operators,

and will be studied in Sec. 3.
An operator is said to be dual symmetricifitis both dual

and symmetric, and dual skew-symmetric if it is both dual
and skew-symmetric. An operator is dual symmetric iff

F{A)oB = A°F(B), (3.13)
i.e., Fis symmetric w.r.t. the metric G, or equivalently, iff

A°JF = 2F (A ) = dFcA. (3.14)
To establish (3.13), note by using (1.16) that

F(A)AB= —I(IF(4))B= —IF(I4)-B
= —I{IA)F{B)=ANF(B)

and combine this result with (3.9). Property (3.14) follows
directly from (3.13) and (2.13). An operator is dual skew-
symmetric iff

F(4)°oB= — AoF (B}, (3.15)
i.e., Fis skew-symmetric w.r.t. the metric G, or, equivalent-
ly, iff

F{B)=}B X{(dXF) (3.16)

The proof of (3.15) is similar to that of (3.13). The proof of
(3.16) follows by using (1.18), (3.15), and (2.13) to get

B X (X F) = BodF — 9FoB = 4F (B).

(3.11)

Garret Sobczyk 336

Downloaded 01 Mar 2008 to 189.128.56.194. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



There is an important identity satisfied by dual opera-
tors F(B). It is given by
FAXC)+FlA)XC+ A4 XF(C)

=1doFA X C + {4 X C)X(IXF). (3.17)

In the special case that F'is also symmetric, (3.17) reduces to

FAXC)+F(A)XC+AXF(C)=1do FAXC.
(3.18)
In the special case that F is dual skew-symmetric, (3.17) re-
duces to (3.16). Identity (3.18) follows by equating the right
sides of the identitites
A X(C Xd)F — C X{4 Xa\F
=dgoFAXC—2F(4XC)
and
A X(C XJ)F — C X4 XIF
= JoF 40C — 2CF(A) — doF CA + 2AF(C)
= —2C XF(A4)—-2F(C)XA4,
and the general identity (3.17) follows by combining (3.18)
and (3.16).
We will now find the determinant, the characteristic
equation, and the Cayley—Hamilton theorem for a dual oper-
ator F(B). Define

det(F) = (1/48)3.°9; X3, F(A)XF(B)oF(C). (3.19)
In terms of the orthonormal basis { E; }, with the help of
(1.17) and (2.10), it is not difficult to check that

det(F) = — IF (E\)X F (E))°oF (E;) = |F (E;)°E; . (3.20)

For F(B) = B, from (2.17) or (1.7) it can be seen that
det(F) = 1, as would be expected. Carrying out the indicated
differentiation in (3.19) gives

det(F) = 1/48[83oF> — 6JoF goF? + (d°F)’], (3.21)
which expresses the det(F ) in terms of the complex scalars
JoF, 3oF?, and doF 2, Note the these three complex scalars
correspond to six real scalars, and are Lorentz invariant;
more about them later. In the case that F is dual skew-sym-
metric, det(F) = 0, since doF = 0 = doF>.

To obtain the characteristic polynomial for F, define

F'=F—A=F(B)— AB. (3.22)
Then #(4 ) is given by
YA )=det(F')=det(F—A4). (3.23)

Using (3.23), and (3.19) or (3.21), we compute
YA ) =A> — |GoFA? — }[doF > — Y3°F A

— 1/48[89°F > — 63°FJoF* + (JoF V).
(3.24)

In the case that F'is dual skew-symmetric, {4 ) simplifies to
YA) =4[ + §3°F ) ?|[A — J3oF )2,

The Cayley-~Hamilton for F says simply that

YF)=0, (3.26)
i.e., F satisfies its characteristic equation. The method of
proof of (3.26) is to decompose det{F )4, which is the last term

in ¢(F ), into the sum of the other terms. This is accomplished
in the following steps:
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484 det(F) = 43,09, X 3, F, X Fy°F,
= 63,X3, FyXFyoF (4)
= 60,X3, FyX F,F(A) — 63, X3,(F,X F,))X F (4
= [6(3oF )* — 12d0F 2] F (4 ) — 243°F F}(4)
+ 48F3(4).

This formulation and proof of the Cayley—Hamilton theo-
rem was first found for linear transformations in Ref. 12.
We will now show that an antidual operator 7' (B )canbe
expressed entirely in terms of two symmetric trace-free vec-
tor operators. First consider the identity
T(B)=(B9,)d,T(uNv)
=1B3,d,T(uNv) — B X3,T(4)
=1B.9,8,T (uAv).
3.27)
The last equality is a consequence of (3.6) and (3.8), since
BxXd4,T4)=B3,T(4)— B3, T{4)=0.
Now define the vector operators
t()=0,-T(uAv) and f()=3,-TwmAvl). (3.28)

An easy consequence of (3.8) is that ¢ (v) and t (v) satisfy
3,t(v) =0=24,tv)

which means! (v) and 7 (v) are symmetric trace-free operators.

We can now express (3.27) in the form

T(B)=1B3,[3, TuAv)+3d,TuhvI)] {(3.29)
=E(B)+ D(B),
where
E(B)=1B-d,t(v) =E"(B) (3.30)
is an antidual symmetric bivector operator, and
D (B)=iBd,tw= —DB) (3.31)

is an antidual skew-symmetric bivector operator. The sym-
metry of E (B ) follows from the steps

EY(B)
=d,E(A)B=13,[A40,t(v)]-B =1d,4-[3,(v)}B ]
= i[SB:d:w])t (v)-B = E(B),

and the skew-symmetry of D (B ) can be similarly established.

Wehave the followingimportant propertiesof £ (B yand
D(B):

I, NE*(uAv)=0, for k=12, (3.32)
and
A, AD¥uAv)y=0=4,D* YuAv), for k=12,
(3.33)

which can be proved by using induction on k and the symme-
try of ¢ (v) and £ (v).

Combining the results of (3.3), (3.13), (3.16), and
(3.29), we find that a general bivector operator can always be
decomposed into

FB)=[HB)+EB)+/(B)+DB), 34

where H (B ) is dual symmetric, E (B ) is antidual symmetric,
J (B) is dual skew-symmetric, and D (B ) is antidual skew-
symmetric. The classification of trace-free symmetric vector
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operator is carried out in Ref. 13 by reducing the problem to
the Petrov classification of a correlated Weyl tensor.

4. CLASSIFICATION OF DUAL OPERATORS

Let Fbe a dual operator, i.e., one satisfying (3.1). The F
has the characteristic polynomial (1 ) given by (3.24), and
setting

YA)=0 @1

gives the characteristic equation for F. The solutions 4, 4,,
A, are the eigenvalues of F. Writing

YA ) =G4 -4 —1)4 - 1y), 4.2)
we find, on expanding the right-hand side of (4.2) and equat-
ing the coefficients of A with those in (3.24), that

JgoF =A% + A5+ A5 for k=123 (4.3)

The characteristic roots of (4.1) have multiplicity 1, 2,
or 3 according to whether

A #A,#A, for multiplicity 1, (4.4)
A#A, =A; for multiplicity 2, (4.5)
A, =A,=A2, for multiplicity 3, (4.6)

Conditions for (4.4), (4.5), (4.6) can be given in terms of JoF,
8°F2, aOFS, 13,15

We see from (3.23) and (3.20) that, for each eigenvalue
/{k ’
[F(E\) — AcE )X [F(Es) — A B, ]0[FEs) — A E3] =0,
which implies, because of (1.17), that there exist eigenbivec-
tors satisfying

F(C)=1,C, for k=123 (4.7)

We will consider the classification of dual symmetric and
dual skew-symmetric operators separately. This is justified
by the fact that we can always decompose F into

F(B)=H(B)+J(B),
where
H(B)=}|F(B) + F'(B)] =13,F (B)-B
is dual symmetric, and
J(B)=\[F(B)—F'(B)] =}B X(0XF)

is dual skew-symmetric.
Let J (B) be a dual skew-symmetric operator. Then by
(3.16), J {B) can be writtern in the form

(4.8)

J(B)=B xQ, (4.9)
where Q = 13 X J. From (4.9) we calculate

J3B)= (B XQ)XQ@=BQ°Q—BoQQ (4.10)
and

JB)=BxQQ? (4.11)
from which is follows that J* = 4Q*, which implies

doJ=0, doJ?=4Q?% doJ*=0. “.12)

The characteristic polynomial (3.25) of J (B ) can be written
in terms of Q %, getting

PA) =21+ (@) — (@) (4.13)
From (4.13) it is clear that the key to the classification of
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F (B)isthebivector Q. The canonical forms (1.21) and (1.22)
for a bivector tell us that
0=0 or Q=pe’, or
The case Q = 0 is trivial.

For the case Q = pe °4,, we construct the null bivec-
tors N = (1 4+ 4,)4,,and M = (1 — 4,)4,, and note, with the
help of table (1.23), that

Q=p(1 + A,

A =INXM, NoM=2 A°N=0=A4,°M. (4.14)
It then follows, using (1.18), that
J(B) =B XQ = Jpe”B X(N XM)
= lpe'(BoN M — BoM N).
(4.15)

From the canonical form (4.15) of J (B ), with the help of
(4.14), we can read off the eigenbivectors and eigenvalues of
J. Thus,
J(A)=04,, J(N)= —peN, J(M) = pe'’M.
(4.16)
For the case @ = pN, where N = (1 + 4,)4,, 0? =0,

J(B)=pB XN =p{BoA N — BoNA,) (4.17)
is the desired canonical form. We calculate

J(N)=0, Jidp)=pd, Jd,)=pN,

Jd,)= —pA,, (4.18)

from which it follows that N is the only eigenbivector of J (B ).
The above cases can be summarized in the following table
enumerating the number of null eigenbivectors of J (B ):
11 Q°#0

Q#0) —(@=0) Q=0
Of course it closely parallels that given by Penrose,” in his
spinor classification of an electromagnetic field. The bivec-
tor Q represents an electromagnetic field at a point in space-
time.

We will now carry out the classification of a dual sym-
metric operator H (B) into the so-called Petrov types. Be-
cause of (4.7), H has eigenbivectors and values satisfying

H(C,)=A,C,, for k=123 (4.20)

That orthogonal bivectors correspond to distinct eigenval-
ues follows from the standard argument:

(A; —4,)C;oC;, = H(C;)°C; — C; ¢ H(C;) = 0. (4.21)
Furthermore, because of the bivector classifications (1.21)
and (1.22), and the fact that H is dual, each eigenbivector C of
H can be replaced by a time-like eigenbivector 4, with
A% =1, or by a null bivector N = {1 4 4,)4,, having the
same eigenvalue as C. We will always assume that the eigen-
bivectors C, of H have been so normalized. The operator
H (B) is said to be of Petrov

Type Lif {C, ] spans a three-dim. space,

Type IL:if { C, | spans a two-dim. space,

Type IIL:if { C, | spans one-dim. space.

(4.19)

Suppose H is Type L. If the eigenvalues A, are distinct, then
by (4.21) the C,’s are orthogonal. This excludes the possibil-
ity that one or more of the eigenbivectors are null, because
inspection of table (1.23) shows that if an eigenbivector Cis
orthogonal to a null eigenbivector N = (1 4 4,)4,, then C
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must be of the form C = 4, 4 aX, so that the eigenbivectors
C could span at most a two-dim. space. If the eigenvalues
are not distinct, simple orthonormal space-like bivectors can
still be choosen with the same multiplicity as the repeated
roots.

Suppose H is type II. Then the eigenvalues of H cannot
all be distinct, for othewise, because of (4.21), H would be
Type L. Also, H cannot have two orthonormal time-like ei-
genbivectors A, 4,, forin this case, letting 4; = 14, X 4,, we
find by using (3.18] that

H(Alez) + H(AI)XAZ +A1 XH(Az) = £3°HA1XA2,
or
H (A5} = (J0°H — A — A;)4;,
so that 4, would be an eigenbivector also, contradicting the
assumption that H is Type I1. Thus, H must have a null

eigenbivector N = (1 4 A4,)4, satisfying
H(N)=AyuN, (4.22)

and a time-like bivector of the form C, = 4, + aN, satisfy-
ing

H(C)=A,C,. (4.23)
Equations (4.22), (4.23) imply
H{A\)=4,4,+ BN, (4.24)

where
B1=A4,°H(4;) = 4,°H (4,) = a4, ~Ay)-
In the degenerate case when A, = 4, (4.24) reduces to
HUA)=4,4,, and B, =0. (4.25)
Finally, note that 4, X ¥ = N, and using this in identity
(3.18), together with (4.24) and (4.22), shows that
fgoH = A, + 24,

for Type II.
Suppose H is Type I11. Then H has one eigenbivector, a
null bivector N, satisfying

H(N)=AyN,

(4.26)

(4.27)
and
100H = 34,. (4.28)

The above classification scheme can be refined by intro-
ducing the notion of principal null directions of H. These are
null bivectors M which satisfy

HM}oM=0 and M?=0, (4.29)

and were used by Penrose? in his refinement of the Petrov
classification of the conformal curvature tensor using spin-
ors. The condition (4.29) was first noted in a remark by
Thorpe.® The principal null bevectors of H are explicitly cal-
culated below, and their coincidence patterns are specified
by new and simple conditions.

Forthecasethatthe i, ’saredistinct, H (B ) has a basis of
orthonormal time-like eigenbivectors 4, 4,, 4,. In terms of
this basis we can write

H(B) = BoA, A A, + BoA i, + BoAA A,

(4.30)

Imposing the condition (4.29) leads to the equations
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MoM=a}+al +a?=0, or a2 = —(a? +a3),
and
H{M oM = A,a% + 4,2} —~Ala? +a3) =0,

where M = a4, + a4, + a,A,, which has solutions
a1=i\//12“/13’ az':i\//{s*/lu
a3=\//1, — A, 4.31)

which correspond to four distinct principal null directions.
For all other cases there will be a null eigenbivector
N =(1+ 4,)4, for which H(N) = Ay N. In these cases, we
expand H (B )inthebasis 4, 4,,4,, = A,4,,finding, with the
help of (1.23) and (3.18),
H(B)=(BoA\A, + BNpB M, + BoH A,
+ (BoH, —AyBoN 4,
where B,=A,°H (4,), H,==H (4,), and A,=}d°H — 21,
Ay=NoH,.
Notethat H (B )is defined entirely in terms of the independent
quartities
H27 N, %aOH, (433)
where H, is an arbitrary bivector (six parameters), N is an
arbitrary null bivector (four parameters), and JdoH is an ar-

bitrary complex scalar {two parameters), making up 12 inde-
pendent parameters in all.

(4.32)

We are now ready to solve for principal null bivectors
by imposing (4.29) on the expansion (4.32). This is done in
the steps below:

M=ad, + a4, + ad,,, MoM =a? + a2 —a? =0,
HM) = +(a, —a,) B4, +MoH,A4,
+ [M°H, — Ayla, — as)l4,,
=, - yB 4, + [Ba, +Aya, — B yl4,
+Bia, + Ay — By)y +Aya,ld,,
and
H(M)oM = ﬂzyz + (6x — 2¢,B,)y
in terms of the new variables:

(4.34)

X=a3+a; y=0;—a,
Bi=A\°H,, [,=A4,0°H,
Thus the equation
HMPPM=028xy + B,y° =2pa,y,
and for p#0+ f3,, we find
a, =172 3)(6x + B, y).
Squaring the equation in (4.35) leads to the equation
V@x+ B,y —4Bixy] =0. (4.36)

Analysis of equation (4.36) together with (4.35) leads to the
following classification scheme of the principal null direc-
tions of H (B):

5=A’l '_‘iN,

(4.35)

111(#£4,s)

2L(BI#8B,) 22(Bi =88 6#0

B #0) 4Bi=0%#p) —(B,=0=p) =0
I 1I I 4.37)
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As an example of the kind of analysis involved in the
above classification, we will carry it to completion in the
more involved case 3,#0+# 3, and § 5£0. In this case, set
x = 1 in (4.36), and factor the resulting quadratic equation
in p, getting

A (5 2252

=0, (4.38)
where
=2 e 5B, — B3
B B3
This equation reduces 1o

y(y——f;-—z)z—o when 88,= B7.

2

(4.39)

We see that for €#0 (or 8 8,# 8?), Ea. (4.38) has double
solution for y = 0, and two single solutions corresponding to
the zeros of the other factors. The corresponding principai
null bivectors can be exhibited explicitly by going back to the
original variables. Similarly, (4.39) gives two double princi-
pal null bivectors for each of the roots of its repeated factors,

whend B, = 81).

InthecasethatideH = A, + 4, + A, = 0, the three Pe-
trov types can be efficiently characterized by the canonical
forms

H(B)= (24, + A,)BoA 4,4 (24, + 4,)BoA4,4,

for type I,
H(B)=AyB — 3AyBoC,C, + p1BoNN,
where
Ci=A4,+aN ]
=f, + 3Aya? (4.41)

for type I1, and

H(B)=BcNC"' = BoC\N,
where

C, =54, + BN, (4.42)

for type I11. The canonical form (4.40) can be derived imme-
diately from (4.30) and the fact that B= 2 BoA, A,.To

derive (4.41), we use the properties (4. 22) (4 26) together
with (1.18) and (1.23) and the fact that C, XN =N, to
calculate

H(B)XN =H{B)xX{C,XN)=H{B)°C,N — H{B)°NC,
=An{B XN ~ 3BoC\N),
which implies that

[H(B)—AyB + 34yB°C,C,] XN =0 for all B.

Applying 4,x to this last identity, and again utilizing {1.18)
and (1.23), yields

H(B)— AyB + 34yB°C,C,
= A,0[H(B}-AyB + 34y BoC,C,IN
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= Bo[H (4,) — AyA, + 34yaC,]N. (4.43)
Applying (4.43) with B = A4, gives
Hid)) —AnAy + 34y + Cy = [40H, — Ay + 3Aya®IN

=4, (4.44)
where u==0, + 34 ya*. Then(4.41) now follows trivially from
(4.43) and (4.44). Finally, to derive (4.42), we note from (4.32)
that for type I1I, H (B ) reduces to the form

H(B)=BoNB,A, + BoH (4,)N, (4.45)
from which it follows that
H{d,)) =4, + B:N. (4.46)

Together, {4.45) and (4.46) imply (4.42), where
C,=6.4, + IBN.

5. RIEMANN CURVATURE: INVARIANTS AND
PROPERTIES

Re.call thata curvature operator R (B )isabivector oper-
ator satisfying (3.9). From (3.34) it follows tht R (B ) can be
written in the form

R(B)=H(B)+E(B)=R'"(B), (5.1)
where

H(B)=i[R - I(RI)(B)=H'(B)
is a dual symmetric bivector operator, and

E(B)=\[R +I(RI))(B)=E'(B)

is an antidual symmetric bivector operator. We shall now
study the Lorentz invariants of R in terms of complex scalars
of R. By complex scalars of R we mean all possible rational
linear combinations of complex scalar derivatives of R * and
its dual (R7}*, for k = 1, 2,---. Thus,

3°R + IdoR? 4 33o(RI)* — 29°(RI)* (5.2)
is a complex scalar of R. Note that (5.2) is also a Lorentz
invariant of R; we will show that all Lorentz invariants of R
can be so expressed.

Squaring both sides of (5.1}, considered as an operator
equation, leads to

R*B)=[H?+E?|(B) + [HE + EH](B), (5.3)
where

H*B)=3i[R>~IRI)B)—{(RI} — I(RIVI}B)
and

E*B)=}[R*—IRI\(B)+ )(RI} — [(RIV}(B)

are dual symmetric operators, and
[HE+EH](B)=§[R2+IRZI](B)

is antidual. Since H ? and E ? are symmetric, it follows by
(3.11) that

IXH?=0=3xE". (5.4)

Because of (3.8), derivatives of R *(B ) can be entirely ex-
pressed in terms of H 2 and E 2, getting

AR?=0H? + SE?=3oH? + JE™. (5.5)
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Now defining K =E 2, note that

JoHK = KH (3, )oB = d°KH, (5.6)
J°EHE = dz°[E(B)°d,EH(4)] = E(3,)°EH (4)
=0-E*H - dNE’H =0 KH — dNKH,
and more generally,
JoE'HE’
0 if i+jis odd
£51.05m =4 ( — WYIAK W HIH 4 KN +IH (5.7)

if i 4/ is even.

From the above remarks it follows that the complex
scalars of R can be expressed entirely in terms of complex
scalars of the form doH ‘K. But the characteristic equations
of H, K and HK are all of the third order; with the help of the
Cayley—Hamilton theorem (3.26), and (3.32), it follows that
all complex scalars of R can be expressed in terms of rational
polynomials in

d°H, d°H?, JoH?> 4K, 3K? IK3;

doHK, J°(HK )?, do(HK )
and their complex conjugates. Thus, R has a total of
36 —3 = 15 independent invariants, and, as we shall
shortly see, the added symmetry of the Riemann curvature
tensor reduces this number to the well known14. (If the same
analysis of invariants is carried out for a general bivector
operator given by (3.34), in addition to the 15 invariants
found in (5.8), there are 15 more given by
doJ? 4L, dL? JL* Jo(HL), do(HLY,

do(HL); doHJ? doH?JwhereL =D ? makingupa
total of 30 independent scalar invariants.)

For the remainder of this section, let R (B ) be a bivector
operator with the property

d, AR(aNb)=0. (5.9)
An operator with the property (5.9) is called Riemann cur-

vature, because it is equivalent to the usual Riemann curva-
ture tensor R, by way of the identification

RijkIER (e; /\ej)'(ek Aep),

(5.8)

(5.10)

the same as is made by Thorpe in Ref. 5. The identities
@Nb)-[3,N3. AR (cNd)]
=[@Ab)d,]-[8. \R(cAd))]
—~R@AbY+ R (aNb)
and
(@AbAe)|d, AR(wAd))=R (cAd)(@aAb)+R(aNd)

‘(bAc)+ R (bAd)(cANa),
together with (5.9), show that

R(@NAb)(cNd)=(@Ab)R(cNd) (5.11)
and
R@Ab)(cAd)+R(BAc)aNd) +R(cha)(bAd)

= 0. _ (5.12)

Identity (5.11) say that R (B ) is a symmetric operator, and
(5.12) is the famous Bianchi identity. (The other Bianchi
identity in this formalism has the form VA R = 0, and can be
found in (9); this paper is exclusively concerned with local
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properties of operators at a point x in curved spacetime.)
Thus, (5.9) is equivalent to the two well known conditions
{5.11} and (5.12).

Now let S (B)=R (B )-B be the sectional curvature de-
fined by R (B ). The sectional curvature satisfies the impor-
tant identity ,

3, NOSUAV = au—s =23, A[0-R @AD)]],_,

=6R(aNb). (5.13)
A well-known consequence of this identity is that
S (uAv)=0iff R (u Av)=0, for all 4, ve 7 ,.

From the curvature operator R (B) we construct the

Ricci operator by contraction:

R®b)=3d,-R(@aANb). (5.149)
The Ricci tensor is identified by
R, =R (¢;)e, (5.15)

and the property that the Ricci tensor is symmetric is equiv-
alent to

s XR(B)=13,N\[3,-R(aNb)] =13, AR(b)=0.
(5.16)

Scalar curvature is constructed by contracting (5.14), get-
ting

R=0,-R(b)=R' =23,-R(B). 5.17)
Notice that we use only the domain to distinguish between
Riemann, Ricci, and scalar curvature.

We now decompose R (B), as is done in Refs. 15 and 4,
by writing

RB)=C(B)+E(B)+G(B),
where

C(B)=R(B)—iBJ,[R ()~ (1/6)vR ],

EB)=1B4,[R()— (1/4)wR],

(5.18)

and
G(B)=(1/12)BR.

The conformal curvature operator C (B ) has the properties
3,C@Nb)=0=3,C(B) and C(B)=IC(B).

(5.19)
The Einstein operator E (B ) has the properties
EB)=1BJ,EW)=E@ANb+aAE@®)] and
E(B)= —IE(B), (5.20)

whereE (v)=3,-E(aANb)=R (v) — wRandd,E(b)=0.An
important consequence of the fact that £ (B ) is completely

determined by the symmetric vector operator E {v), as given
in (5.20), is that

IgE*(B)=3,-E*(B), for k=12,3,.. (5.21)

[Recall (3.32)]. The operator G (B) satisfies
d,G@Ab)=1bR, 3,G(B) = iR, GUB)=1G(B).
(5.22)

A comparison of the decompositions (5.1) and (5.18),
together with the properties of C, E, and G given above,
shows that
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H(B)=C(B)+G(B) (5.23)

and that E (B ) has been correctly identified. Because of prop-
erties (5.19), (5.22), and (5.23), d, H(B) = d5-H (B) and
therefore the 15 real invariants determined by (5.8) reduce to
the well known 15 —1 = 14 for Riemann curvature.

If spacetime is not empty but is filled with sourceless
electromagnetic fields, the Ricci operator (5.14) satisfies

R@) = — g, (5.24)
where Qisthe electromagnetic bivector defining J (B )in (4.9).
It is easy to check that in this case the scalar curvature

R =d,-R (v) = 0, as is well known. From this it follows that
E (v)=R (v), and from (5.20) we calculate

EB)=BQQ-BAQQ=(BQ—-BAQIQ. (525

Equation (5.25) shows that the Einstein operator determines
Q uniquely up to a phase e ?. Further discussion of these
problems in the language of spinors can be found in (2), {3),
and (15]. There is a discussion of Maxwell’s equation and

properties of electromagnetic fields in the STA formalism in
Ref. 7.
To demonstrate the geometric transparency of the spa-

cetime algebra (STA) formalism, we give a new geometric
argument for the well known numbers of independent pa-
rameters (IP) of the Riemann, Conformal Weyl, and Ein-
stein tensors. Let F (B ) be a general bivector operator. Then
F(B)has 66 = 361IP, since both the domain and range of ¥
are the six-dim. bivector space & ,. Taking the contraction
and curl of F(B) defines the operators

f(b)=4ad,-F(aNb) (5.26)
and

T(b)=d, NF(aNb). (5.27)J
TENSOR STA
F,=—F,=(,Ne)Q Q
Fl, = YeunF" 1Q

R =(es NeJR (e, Ney)
Ryurs + Rpps + Rypis =0
2
E,, E" ,CP"E, ™E,,"

[ +E%,,E®, C*"™E,™E,, ]

uyrs

3, AR(@Ab)=0

uvrs rsuv

3,0E*C(B)
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