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0, Introduction

In this paper we chavacterize the local properties of a
differentiable manifold by inbroducing ths concept of a geometric
strucbure, This conecepd nakes it poszible to study the local
properiies of o manifold in the framework of linear algebra,

That thisi&ndeed possible was noted by R. Sikorski in £23] and
{24], where he doeé thisg in the language of modules, Unliks
Sikorski, our setting is a cerbtain Banach algebra called geo-

metric alsebra, A geometfic alzebra is & real graded linear

space provided with a Qlifford, or geometric producht which has
comprehensive gecmetric significance, The term iéeomatric al-
pebra’ was first used by Clifford himself in (4],

Prasently Clifford algebra finds a rather resiricted use
anong mathamaticlans and physicis$s in spinor representations
and the classification of orihozonal groups, and in the sbudy
of certain invariants of guadratric forms., See [22], [1], [20],
and [19]. That glifford algebra has in facgt a much wider ransge
of application was first recognized by D, Hestenes, who con=
celved it as a comprehensive langusge for the ezpreésion of
goometrical ideag, In ;ﬁB} Hestenes shows howy tle basic ideas
of calculus find a direct expression in geometric algebra. In
121 end [14] he further demonstrates the conceptual and sym-
bolic ¢laxrity basic equabiong of physics‘atﬁain wnen expressed
in this languags, liors recaently in [ﬁ5] he shows how the lan~
guage lcads to a new understending of the geomebtricel siganifi-

caace of the Dirac eguabtion. Ldditional refarences to the
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works of Ilestenes along %hege lines can be found in [jBJ. The
author in [25], and them jointly with Hestemes in [16], [17],
and [ﬂg], cohtinued the mathematical develonment of this lan-
age. |

The present wori is the natural ocubgrowthi of the work begun
1 ﬁE]and [?5], znd gontinued in [46}, gﬁ?j, and [73}, but gpes
considerably beyornd it. ZTor instance, multivector differentia—

tion iz studied in its Tull generality for the first time, and

e

the concept of a geoomebtric structure iz eantirely new,
Thero are four chapiers in pavd I , .
Chapter one sets Cowmn the algebraic framework which in this
work will be refered to as geometric algebra, One of the nost
striking algebraic featurss of this language is its powsrful,

and geopmetrically sisnificant cancellatbtion property. The pro-

jsection of the whols goometric algebra onbo & finite dimensional

geomestric subalgebra in discussed, and is of cenitral importance
to the ideas presented in this work, In addition various noba-
tional conventlicong axe established. -

Chapter two is concerned with topoleogical espeets. In
particular it is noted that we are dealing with a Banoch algebra
which is also a real Hilbert spacs, When we wish to eophasize
topological prozertiss of a geonebric algebra, we shall sore-
tines refer 1o it a2z a geomstric space. Addibional nofationr;
and terminology are introduced for the study of diffcrmntiable
functions of a multivector variabla,

‘ Chapter bthnres iz concernad with differentiabion in a g&é»
rmetric apace, in ferms of which are defined the tangent man,
the generalized sradient, and the adjoint asp of a diffcren~
tiable funetion of 2 mmltivecbor variable, Tke exact rslation-

ship between this lanznage and the currenitly popular tenscors




and differential forms begins to become clear.

Chapter four nafrch'attention t0o the Banach algebra of
Bounded linear operators of the geomebric space into itseslf.
This limnitation guaranbtees the existence of bounded adjoinis
and makes possible a clean expositioa, which is yetb sufficiéntly
general o exibit the Tull power of what we call the theoxy of
geometric structures, studied in part II., The close relabion-
ship batween a linear map and its adjoint is studied, and it
ig shown how a nop~sinzular linear map, called an outermorphism
can be inverted directly in terms of its adjoint., In addition
a new ond sinmpls proof of the C%}ey—ﬂamilton theorem is given,
which further raflects the richness of our algebraic framework,
The methods used are also of parbicular intersst because they
suggest generalization to infinite dimensions,.

Part II consists of sixz chapbters, and its setting is the

Banach slgebra of bounded operaters defined in chapter four,

In chapber five this Banach algebra is considered as a ring

.of bounded operators, and is used to generatse & polynomisl ring

consisting of polynomlalas of bounded operators, A4 geﬁmst:ic
structurs is then defined in ternms of these rings. Briefly,
a gecmetric strueture is a derivation on the polynomiasl ying
which is at the same time a derivation on the ring of bouanded
operators. Inbegrable F-structures are then defined, and the
nroblen of extending e structure which iz ziven on a finite
geonetric subalgebra is discussed, h

Chapter six shows how the nobtions of shape and: gurvature
of a structure naturally arise in studying derivations of the
projection operator. The ilmplication of this is that integraw
hility candiﬁions_of a menifold can be algcbraically character=

ized by derivabions of the projection operator,




L

In chapier seven intrinsic structure is dofined in tevna
of the given {?xtrinsic} structure. Although this could be
turned around, doing so would result in & much more complicated
theory in which the shape operator, vhich involves a normal
component, would have to be given up. However, the inbtrinsic
structure does have imporbant pronerbtiss of 1%s own, aand these
are considered in this chapter.

In chapter eight scalar valued linsar mappings called forns
are studied, Iach such form is the uanigue representation of a
mltivector called the body or field of a Tform, Since mulii-
vechbors are mul¥ipliad by $he rules of geomefric algebra, there
is no recason %o define any operations) such a8 an exterior pro-
duct, or an exierior derivative on forms, The grodient of a
field dis studied, znd a generalized Lie braecket of fields is
considered,

In chapter nine gensral properties of two struciures which
are related by an oubterrmorpunism are studied., Special aitention
iﬁ given to how the divergence and Lie bracketa of relaﬁed
fields transforn between related struetures.

Chapter Ven considers structures which ave projectively
or conformally related. Partionlarly significant is the simple
algebraic way in waich this relatedness is expressed, with the
noticable absence of differential equations, Simple compuba~
tions of the eguivalents of the Veyl Projechive and Gonformal::
tensors are given, Qhese_sarva o illustrate the full utility}_
and divectness of tais theory, dealing only in torms of the "
rolevant geometric cuantities themselves.

There are two cpsendices to this work,

b=

rpeadiz A discusses basic formulas for differentiation
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which ha%e beea used ia this work. The notion of the signabure
of & mulbtiveetor is defined, and tables of such signatures are
ziven for a= 2,3, and 4,

Appendix B sgusggeshts hoy a differeaticble manifold can be
gefinsd in terms of geometrié struchures, Roughly a manifold
ig a connected point set in geometric 1-aspace, with an attached
geometric structure ab easch poirt, A briel discussion of in~
togration on manifplds 1s included to give soms idea of the
gerneral theory of integration vhich is possible.

A 1ist of symbols used, and vhere they first appear, is
attached afier appendix B. _

This work is necessarily incomplsete, but it is hoped thatb
i% throws cufficicnt 1isht on a virtualiy unused 1anguagé,
whose full generalisy and conceptual elarity has for years
lain hidden from visv.

A few pore remarks about references are,necessary. iiost |
helpful in the beginning stages of this work vas J,U.C. Gerret-
sen?s discnsaién of the Weyl Projective and Conformal Tensorsg
in [6]. TInsight into the difforent ways in vhich the nobion |
of curvature of a nenifold can arise was provided by Il. 5pivac’dix
very readable books 126]. References [3] and [21] were mest | |

helpful in establishing the functional analytic framework of

this work, The remaining references |2J, 151, 171, lal, 19],
£1G), [ﬂﬂ], [??], and £28} were used for %he most part in

making comparisons with other approaches,
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1. Alecbraic Tramowork

- T
et Y= 2 et be a real graded linear gppace with a
T

Clifford geomelric nroduct satisfying for A,B, Ce 5

(AB)C = A (8G), the associstive law, . (1)

and
A (B+C) = AB+AC , :
the distributives laws, .2)
(B+C)A = BA+CA ,

-EBlements of O are called rultivectors, and ia this work will

always be denoted by ecapital letters 4A,B,C, .

Each rmiltivector A can elways be writbten as

A = A Ar » (’1 .53\)
where
Aoz {AD, 97 . | b)

Dofinition (1,3b) introduces the operation < », of haliag

2
e r-vector part of & muliivector. Elemenits of g¥ are

called z=vectorz, and in this work will always be denoted by

capital letters A, D, C,, " subgeripted by = , the

degres of the muliivectors. Ths terss ggalars, vochors, and

g - 0 20 e
crp are reserved for elements of o7, Y, and w7,

el

ivec

L

o

regpectively, In oddition we will use tho special gymbolism
bty .

< =0 (R O 5 5 y ©7°p  vhem refering exclusively to
secalars or vechors rospactively.

Two veckors a,b, -are scaid o be orvhogonal if
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b = =83 . ' (1.4)

A =aa2---a n : (105}

where tho vectors ay are mutually orthogonal, then 4,69 *

and is said %o be a gimple r~yector,

The geoneiric 2lrebra O has the additional disbinguish-

ing features:

g¥z= ?(ﬁ'] + is & real nurber 2\ i (1.6) -
It ac O then
aa = &> 0 and 82 = o iff =& 0 '
£ = ~ s — = - (1 .?)
Tinally if A ¢ Q¥ | then
7 ;
A= 2 4, (1.8)
i i i
where each Ar iz a simpls r-vecioxy, In words (1 .8) says
i :

that cach r-vector cen be written as a sum of simple r-vectors.

a} Ouber and Ianer FProducts

The geomebric algebra ( is not an exberior algebra, bub

an exterior, or onter product can be defined in terms of the

geometric product, For A ¢ gr , and Bje QS , define

: it 5= S
4,AB € g by

ApnBg = <ArBs> res (1.9)

Complementary to this oubter product is an interior or inver

rroduct defined by
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™ . -Sl‘
LAy By = <Ar}zs>lr—s !E 9&‘ y (1’19)

It is natnral %o exzbend the definitions of the dnner and
onber products distributively %o all of 9 , &@né thumg they will
satisfy for all A4,B,0. € §,

A (BsC) = A'B + AC (1.112)
and

An(esc) =87+ ane . b)

ote that fox 4e3° , aud B € 9
, ' (4.12)

ie,, the inner, ouber, and geometric products are in this case

Cj"l'B =d‘B = J‘J"\B

equivalent,

In teras of the ouber product, we now inbroduce the prin-

ecinle of pulbivector decomposition: iet S}L‘L) be a pro_@osition
abont multivectors A €9, 1If
i) U b A] is true for all scalars and 4=vecbors in g

N

ii) -j(ﬂ-}-B) is %$rue whenever 5‘A) and 5(.3,\! are true,

45y T _, ‘ o (1.13)
iii ) ‘ 9. AA) i3 true for each vector a €Y when-
ever ,ja@.} is true,
Then 5{,5' ig trne Tor a1 A€ 9 ., Thiz rule is a simpie .

H L -
conseguange of (1 .5&) and 1 .8) y and is helpful in ostablish~

ing general properbties sbout oultivectors.

Finally we define an ghsolubte immer product of mulbivectors

A eand 3 by
50 = & A3 :
ARB R AR g (1.14a)

and sn chreviated ipnar produck of A and B by

AB=ap~- <ay2-a<8) + Y <BY, . b)

The aebsolute ard sbreviated inner products are inbtroduced
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becaude thcjr greally simplify the expression of general proper-
ties of mulitivectors, In order %o avoid later possible confu~
sion, we iamediately give the close relationships bebwsen the

thres kindg of innsr produchs.

For +e¢o° and A,B¢ Q,

Hd =0, | (1.15a)
and |
AB=AB, if CA> =0=B), . b)
APB = Z—<ﬁ>r'<ﬁ>r =2 AsBr (1'168‘J
L ; r>o '
and & |
@).0B=la> B =408, . b)

The relationship (1.15) is a trivial consequence of the defini-
Fion (1,14b), and (1.16) is a consequence of thedefinition -
{‘T.‘lf-.ta} and the more general algebraic ”ir.les'xt:ity (1 .21) given

in the next seection,

b) Distinquishing Algebraic Identities

The following list of identities shonld establish the
complementary roles played by the inner and outer products,
These identities, and others which can be derived dire‘ctly
from them, will be used $throughout this work, The proofs of
thess identitles can be esbtablished by induetive argusenis
on the degree of the multivectors, but they will not be given

hore, Sone of the prcofs can be Tound in ['12] .

Por a veector ac 91 , azd a maitivector Be Q,

8B = a:f + ans , (1.172)




T

a:B, m-%-f’r:aﬁr-l- (-1;)1'*1Bra] , and B)
anB,, =4[ ap -1)* 8.a
Bp =7~ 88, + (+1)" By _1] * c)

For aeg1_, B.e QY , tnd 0eQ,

T )

a:(B,n0) = (B )AC + (1) B Af:0) , and (1.18a)

Br'(""‘"/\%) = (Ba)-C + (=1)* an(Er-cﬁj s for T8 o D)

Finally,
(AI,ABS)-G% & Az',»'(Bs-Ct) ¢ Lor wss st , (1.193)

-

end for the vectors a, aad bé .
(8qA 8 Aoy (BuAby 4Ae-ADy) = deb(ag by )y b)
vhere “deot” means “determinans. '

Commubting the factors of inner and outer products can be

aceonplished by uwaing the rules

r!s‘.f
AgeBy = (-0 Vs .n , ana (1.20a)
= (=q)¥S _ .'
A, AB = (=1)"® B_AA, . b)

The geometric product of an r—-veclor Ar and an -
s-vechor Bs can be dacomposed into various maltivector parts

by using the identity

bypBg = Apilg + <A::'Bs7jr—-s; 45 Tt <‘?."r""'s> Cr5=2

+ .&rﬂ By,

(1.21)

Identity (1.-‘!?&) is a gpecial ceagss of this when r=1 . In the

next section we diseuss the gpecial case vhen r=2

"
e e i
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¢) The Commubabor Product

1ot B, be & bivector, and Ay = <A >r . Then using

(1+21) and (1.20) we find thaet for emeh r ,

BZA:': = BZ:A:' % <82‘e’4:>:c * BQAAr :
and r (1.22)

A B, = Byth, = (BAD, + BoA 4,
fron vhich it follows that

i = - - Ve

[Borby] T BAp = A8, =2 BAD: (1:23)
Hore generally we define

I's,al=n1~2B : 1,24 -
P LR - P Yo {Vert)
%o be the gommutstor product of B and & i

From the easily esiabvlished disteibutive rule

7= R
[B,AGJ—[B,AJG-»A[B,CJ ; (1e258)

with the help of (2.23) and (1.22) , follows the non-trivial

special cases

[B, , aec ] = (B, » A]-C +Ao[32 T I b)
and

[, s 8] = [By8]Ac + aA[B, , c] 'f'. o)
The commubator product is not associative, bui does satisfly

(4, [B,c}:{ + {c, [A,S}—]q-[B, LG,A}] =0 , . (1.28)

which is Xmown &s the Jacobil identity. |
Equation (1.23) implies that the space 92 of bivoetors .

ig closed under the comcmbator product, It follows that under.‘._-"-

the commubator product the bivectors make up a Lie Algebra,
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whaich is, as ig well knoun, the Lie algebra of rotations. The
go-called structure eguations for this Lie algebra can be writ-

ten in the fornm

K g . _
- aah ctd 1= (boc) afd - d) ale + B4} bas

- f{a-c) epd

where a,b,c,d are vectors in §}1 . Equation {(1.27) is
casily dovived with the help of (1.25¢), (1.23) and (1.18a )

d) Roversal and Norm Operatvions
Suppose that A_ is a simple r-voetor, and cen be fac=
tored into A_ = 2a SR -1 . ‘Then we say that
d in T 132 » ks i oay

_f_
)5. ﬂaa vea 8

v o 1 (1.28)

s the reversal of A s and that

l4,] = \li‘x,_‘.a? = \Jf A OL] | (1.'29)

T
is the margnitude of A_ . In perticular for a scalar 4,

‘Cfg , and for a vector b , 5TE£ b and

o
H
-+
B
fud}
E
1t

ib | =-j;EF, as would be expected, Both the roversal and the
nagnitude of a simple r~vecbtor ave independent of the-par--
ticular Tactoring into veciors.

Since, as a consecuence of (1.8 ) , any multivector £
can be vwritbten as a sﬁﬂ of simple mltivectors, it is natural

o defins the reversal AT-of A to bo tae sum of the revey-

i

Y “,

sals of all its siople parts.izzn-tezmg of tQu abzoliuts inner
: haws

product {d.ﬂ%&} , end the revercel operabion, it is possible

%o define the norm of an arbitrory element A€ J by the
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equation

lau2=aea | (1.30)

It can be taken as a final axiom that the geometric algebra

O is both closed and complete under the norm operation. Ie.,
fali<o , for each A€ O , - {1.310)

and if éké | x>0 3 is a Cauchy sequence in &, with rospsch

to the given norm, thea there exists an A.EEQ such that
i -Alj=0 , b
lin [}, A I )

lNote that the index k ig being used on the left of A , sinbe
when it ig nsed oo the right it denotes the degree of the
mltivector, |

The most important properties of the roversal operation
are now given, and can eagily be established from the defini-

tion (1.,28) and {1,208), For 4,8¢3,

kT TG, (1.32a)
(48) = BT, ana (.Aq—B)T ah 4B ot . )
(AN =2, ema g
4B EY = O'BA Y, - a)

The properties (1;523,b,c) ostablish the reversal operation
ag an involution of the geometric algebra J W Property (1.324)
is a gimple but ussful conseguence of (1.52a,b) .

Finally we susmarize important properties of the nornm
operation, which also can be easily verified. If A, 1s

simple; then the magritude end norm of A, &¥° 1d9nti°“1-

AN, i

TR
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ha l=la l .. | (1.33)
The norm iz positive definite: For A€ E?,

Nall2¢ , anallall =0 1£2 A =0 . (1.348)
For A,B€ 9,

lasii2llall + UBH ; and . o fips s F )

: . A= E‘*'It“ ; 7 ,

Nasl<iatiall o w &y e Y S
Furthermore, _ d

liaBi[ = llAllBY 41f A or B is simple’, a)

The propertiea (1.34) guarantee that the geometric algebra
O 1s a real Benach algebra (see [21; 2] ), since we have al=-

ready assumed that O is complete (1%.31) . In addition since

the norm iz given by tre absolate inner prbdnct (1.50); Q is
a real Hilbert space. The topological proverties of U will

be discussed in chapter 2, %

o) The Inverse Operation and Cencellation

It A is & pimple non-zero r~vector, then it has an

T
inveorse, It is given by
e e -2 T
Ay = bagl™" Ay : (1.35)

Hore generally a mltivector B is said to have an Inverse

it}

B s provided

1

Bz =1 =878 . | (1.36)

The assoclative law (1.1) guarantees that when inverses exist,

they are unique.
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Te can now glve the very powerful and geomeirically sig-
nificant cancellation law of geometric algebra: If A is a
miltivector for vhich A~} exists, them

AB = AC iff | B=_ . (1.57)

That this identity is by no means irivial should be clear from
identity (1.21). In fact this law is a most distinquishing
feature of this language; and we challenge any interested
reader who doubts this statement to formmlate its eguivalent

in his choice of languages,

f) Finite Subalgebras and Projections

The geometric algebra need not be finite dimensional,
but to each unit simple n~vector Iegn there corresponds &
unique 2P-dimensional subalgebra D= y(X) defined by

Y= §5aeg| T-(11) =43 . | (1.38)
' The finite geometric algebra 4 is assigned the orientation
of I, and I is called the pseudosealar of }j . The algebra
) can be expressed as a finite sum of graded spaces fbk =
0(1) + s ve write |

y=3 5, . (1.39)
whare -
o fﬂakégk | Te(ra) =45 | v)

n
and dim[ﬁjk]= (Ic) If we define the prejection operation

-

oento the algebra ) by

p(a) = 1%(14) , for each 4¢Q, (1.40)




17
then (1.38) and (1,350 ) cen be expressed more simply by

P{9]= D, ema 2[g¥]=F" .

The role played by the projection cperator P in this

_ work is of central importance, the following are its most

importent properties, ILet A,Bc{ . Then

PP&) = PA) , | (1.418)
P(A+B)%P(IA).+ P(B) : | ' b)
PAAB) = PA)AR(B), and - c)
P(AB) =4 B(B) , if P{a) =4 | - a)

_The properties (1.41) follow easily from the definition '

(1.40) and algebraic identities, _

wnereas P is the projection operation onto the.finite
subalgebra 39 = }j(l} , it is alZo axpadient to have a pro-
jection operator Q anto the whole geomebric algebra Q-
Thus we ;ief:l.ne

.Qa) =A for all AeQ . 8. O (1.42)
Glearly ¢ is the identity mapping om ¢ . It is also clear
that @ satisfies the properties (1.41) , but note that it
isn’t possible to give an algebraic definition 1like (1.40)
for o , unless Q is ibself finite dimensional. This is be-
cause a pseudoscalar exists only for finite geometric algebras,
However, in the next ssction we shall express Q as the linit

of a sogquence §F,? of finite projection: operators.

g} Basis, Reciprocal Basis, and Summation Conventions

We Pirst restrict our attention to a finite subalgebra
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ba) a,%}{:[) ot F . 1et iailﬂ.-’ ién} be a basis of I
{rscalling definitiocn {1 .39)) « Then immediately an r-vecltor
basis gaiE ] 1 fii; £n 3 can be written down for %r . It

is defined by

a;_ = a.Aa, AAR where 1£i-%<n T3
ir 11 12 ir s T ( )

by which wo mean 1 éi‘l(ia("'(iré n’, Of course the
n
dim Ja. =( )
5 153 w *

Reciprocel to the basis $agl is the basis iajj i
which is uniquely determined by the relations
agrad = §1 for 14, 54n. - (1.84 )
The reciprocal r-basis of zai_} iz then éaﬁf} s Where
= 1o

Iz ] 3 3
afzaTAa T Nerna Y, o (1.45a)

.end it satisfies the relsations

Iz iz

T

ai = & = 31_ - .b)

r :
3= _

The exact meaning of the symbol 5 ;- should bo evident from
T

i%ts usage in (1.45b) .

Now let BrEj}jr « The general summation convention used
in this paper can be clearly illusirated by writing Br in
terms of the basis &y . Thus

I

e
Br-a”ai_; Z, (Br-arJ a;_ =B, . (1._46a)

G
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Bor r =1 , this reduces to the usual summation convention
i 2 i | :
b o a = b‘a- a - b - .b
1 151&;:[ )2 | - )
We now ﬁxrn onr attention to the whole geometric algesbra

9 . 1If we assume, and we will always do so in this work,

. that 91 is a (real) separable Hilbert space, then we are

guaranteed the existence of a gountable maximal orthonormal
set EPi l 1«1 4&3} " (See [33 354] for details about
Hilbert spaces used here.,) We shall call the set gpiz a

standard bagis of 91 « The basis gpi?s orients the space

Q , and since it is orthomormal, it is identical to ilts re-
; ki i’ 3
ciprocal basis gp } . The standard basis Epi} and ip 3

cen now be used to generate the standard r-hasis
P Al - | 1.47a
$Piz | F<w b o | ( 47 )

and reciprocal r~basis

.Epjf.l 1—&33?(@}& - wegyep B

of each grade Qr of Q,in exactly the same way as in the
finite dimensional case just discussed., In terms of these ™

basis’ each Bregr can be written

i i

- T _- il

e ez ner e, (1.40)
e )

wherae in this case we are summing over a possible infinite
numrber of indicies. |

We have already noted that the basis {pi} is identical
to its reciprocal basis i;pj} . In the case that we ave

_given an arbitrary countable basis éai} of 91 , it may

i
1_
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happen that a reciprocal basis to gai} does not exist., This

case will be discussed in sectlon 3d).

Finally the standard seguence of finite subalpebras

%23(111)} , with -respect to the sbandard basis £Pn} , is

Generated by specifying the sequence

Ip=P , L= 2P wee s Iy = BBy o cee (1049)
of simple mulbivectors., It can be seen that for each n the
pseudoscalar I, ‘of jj;:In) inherits the orientation of the

‘standard basis Epn} 5, An algebraic way of saying this is
that

+ » . _
I,1,I, =P, s for each n>1% (1.50)
We shall dencte by P, the projection operator oxito Ej(ln) i

for n>1 , and say that 3P { is the standard seouence of

Pinite projection orerators. It is now possible %o express

‘the projection operator ¢ , defined in the last section, by

S= n]::-z; PD- » (1'6513-)

gince for each Ae¢ Q ,

 Lam | B,(a) = &lf =0 = b)
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2. Topelogical Framewori

The norm (1.30} defined on Q makes it rmeaningful to talk
about the topology on @ with fespect to this norm, We shall

call the gaometrio algebra O a pgeomelric space whcn we wish

to emphagize its topological properties.

Eaeh grade 9 of Q is a real separable Hilbert space
with the norm (1 .30) given by the sbgolute inner produch (1 .‘!3) §
when restricted of course fo Qk + £ countabls orthonormal
basis for each Qk is given by (1.47). The whole geometric
space Q is the topological sum of the real separable Hilbert
spaces 9 , @#ith the additional property that

Qog , the zero element of O - | (241)

Thug all of the ®zero poinr.s“ of the spaces 9k bave 'bee:n.
idant‘ifmd with t‘ﬂe zero point of Q "’he geomtzio spaca

O is itself a real separable Hilbert space with the norm
(1.30)' given by the ebsolube inner product (1.13) W A counte
gble orthonormal basis for O is given by taking the countable

union of the countable basis? given for cach Qk in (1-',47)‘,

a) Continuoms Funchions

Let 2°= F(Z) bo a function whose domidn and range are
in 9. The function F is said to be continuous at a point of
its domain, provided it is conbtinuous with respéct to the nornm
of Q. Functions of several multivector variables will also.

be considered. All the usual properties of econtinuous func-
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tions hold for continuous functions of muliivector variables,
Two important Tunctions defined and continuous onm all
of 9XQ are

F(By 08 )= 42+ o2 , and (2.22a)

6 (Z0p%) = 42,32 - b)
The continuity of F and G is guaranteed by the properties
(‘1'.331-) of the norm,

Lot C(Z) denote the set of all continuous functions F
‘at the point Z €9, The range and domain of F will always
be assumed to be in T . The set C(Z) is a very large set
of functions, so it is useful to signal out smaller subsets
of C(z) which have additional properties,

call C&"S}(Z) the set of {&,s)-homogeneous continuous

functions at Z - A function 2cC¥1%)z) if and omiy if
rel(z) ana

F((z)r) = <r(z)>, - o - (2e32)
e also require that the property (2.3a) be valid for all
points contained in some open set containing the point 7

We will further say that F is A~homogeneous at 2 if

FEC&'!T"J}GZ) for each r such that r+aZ0 , b)

In the case that A= 0 , we will also say that ¥ is homo-

geneous at 2 ‘a

Another important subset of C(3) is the set CP(Z) of
continuous P~functions at 2 , wvhere P is the projection
operator onto the finite geometric su'bapada b. We will say
that T€ Cy(z) if and only it F€ C(z) end

F = FP {244a)
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at all points in some open set conbtaining the point 2, If
in addition to (2.4a),

F =P°F b)

‘at 211 points in some open set containing the point 2 , we

will sey that Fe o Co(z) , where P° is the projection
operator onfto a second finite geometric subspace 2:‘}' « The
sot 5> C,(2) 1s called the set of contimuons (P”,P)-functions

a'l; Vo
(x,s)
0f course we can also talk sbout the set P"C (Z) of

{f;s)~homogensous continuous (P}P)-functions at the point Z 5

end various other combinations of the above notations,
In the next ssction we discuss the subset of functions

of ((2) which are linear,

'b) Linear Funetions

A fzmci::.an F Q-——-}Q is said ‘t;o 'be lmear pszovided for
all A BEQ , and d-.ﬁeg
F(d—.& +BB)=dF @A) + gr(a) _ (2.5)

If in addition F is continuocus &t some point % , then ¥

is a continuons linear operator on Q. Iet { denbte the set

_ of all such operators on O . It follows that [ is a subset

of C(Z} for each Zed,
It is natural to make [ into & normed lineer space by
defining

ol = onp 2O

AT for each Féf 7 (2.6)

e
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There is an extensive literature on the study of normed linear
spaces of continvous (and hence bounded ) linéa_r operators on
a Hilbert space. A basic property of this theory, which will
be mich used 1in this work, is that a linear operator P on a
Hilbert space U is bounded if and only if it has a lincar
adjoint F' defined by

FQR)OB = A@F*(B} for e11 A,B€Q ., . (2.7)

Furthermore when F & exists, it is vnigue and alsoc bounded,
gee [3; 355 and [21; 2057 . |

A function F : §x9—> G given by F{A,B) , is said
to be bilinear on £ i1f ¥ 4s linear in both of the variables

2/ we shall mean the normed linear space of

£11 continuous (in each variable) bilinear functions on O ,
The norm on Ec,f, is given by
iF{a,B
T — i s M
A,Bg [AlliBI|

{2.3_)

By the adjoint of a bilinear funciion .‘E’é‘?'cﬁ s We shall mean
the unigue function Iﬂ.e ac,ﬁ vwhich satisfies for all A,B,Ce9,
.t.
F(4,B)@C = 37 (B,6) . - (249)

It is natural to extend the notation used to talk about

~ ! )
subsets of continucus functions $o subseis of linear Ffunctions

ag well, Thus by ii's) we meen the normed subspace of (r,g}-“\

homogeneous, bounded, linear I~funciions of 9 4% In addition,
we shell use the syobol cf_o to denote the imporbtant subset of

L consisting of 211 scalar valued bounded linear forms on i,

o




25
e¢) Decomposition of Hultivector Variables

A varisble Z€ 39 can always be decomposed into ibtg homo-
gensous multivector parts by

z=g<z>k = 2:_-91-_2,1 +Zg+ e .- (2.10&)
where it will always be understood thet 32, = < Z>}g ' Ea

addition the speecial names

HEZ g and =z = 2

A . bl

1
will be adopted for the scalar and vechtor parbs respvectively.
An illustration of the usage of this notation is provided by

considering an (r,s)~homogeneous funetion F . We can express

the property (2.3a) of P by writing

5= ¥(Z,) = (B(<25,)05

The primed s-varisble Z7 is the velue of P at the r-vector

variasble Zz- .

~ Operating on both sides of (2,10a) with P gives the
corresponding depomposition of the variable V= P(Z) , of
the finite (en-dimnsional) gecmetric subspace YJC Q. Thus

v=o;<v>k=vo+v1 -l--u-:-?’n ” - (2.11a)
Again we adopt the srecial notation
TEVG and VEV1 - b)
for the scalar and vector parbts respectively., In the snace
fn
Z) , the variable TV, has ( ) degrees of Ireedon,
% k

If 2 t-vector varisble ztegt . Ox Vte,?gt , can be

written as
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Z, = Z,A%, ,0r Vo=V AV, |, - (2.12)

then it is said to be decomposable into the outer product of

an r- and s=vector variableg IT ZZ: is a simple k-vechorn
varisble, then it can ba written as the oubter product of k
vector variables. In particular, if for the k vector-vari-~

8bles Z,, Zoyten Dy € gt ;
1
Ty = 2= AN : - (2.13a)

we say that the verieble %, can be simplielally decomposed

into the sipplicial varisbise Zg . Similarily we will write

T

1 ;
~F1 VAT ATy = 2(zz) » : b)

for the simplicial varisble of ,?jr__ « Alzo note the conven-
fions

Zoﬂzb-ﬂs.’&ﬂd Vor:?é-z')". 5)
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3, Differentiation

) The Tangent Map

+ Buppoge that a funetion F is defined in some open sebd
containing the point Z €9 Ve will say that P? is differen-
tiable af Z provided there exist a linear transformation

F(A) on O with the property that for cach A€ 89

1in )
t 2o

F<z+t_%}-ﬂ2-‘_}:§@)” =0 W (3.12)

Classically F(A) , when it exists, is known as the Frelhet
derivative of F at Z , but we shall call E’CA) the Tanzent
mpof F at Z , Several notations willl be used to repre~
sent the btangert map of F ; each has its respective advan-
tages, They are

F(A) = F(2; 4) =40V, F(@) =40V T, ' b)
The notation F(Z; A) emphasizes that tho tangent map is ab
the i}oint Z » The notation 40V, F(2) expresses the tangent
map as an A= (dircetional) derivative of ¥ at 2 , _

Two well known properties of Fréchef derivatives on a
normed linear space will now be given. See [3; 264] for de-
tails.- The tangent marp E"(A) vwhen 1% exists is unigue, and
it is bounded if and only if ¥ is conbinuous at 2 ., I%
follows that if F(A) exists; and is a (P}P)- map, then F(a)
is bounded, and F{Z) is continuous at 2 -

In this work we shall only consider functions which are
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continuous and differentiable at Z . This guarantees that

P L, the set of bounded linear operators on Q.

b) The Gradientk

The differential opesrator VZ is called the gradient
with respect %o the mlbivector varieble 2 . It is chap-
acterized by the following two properties:

-i) VZ has the aigebraic propertices of a multivector in 9,

ope rator (3.2 )
i1) 40V, is the A-derivative defined by (3.1).

Property (3.24) pormits us to decompose Uy into its

homogeneous gradient parts, Thus in analogy to (2.8) we

write _ L.
vz = Lv Zr = vzo + VZ'? + vza + A 3 . (3-5&)
For the scalaxr and vechor gradient parts of VZ we will also ,
write '
4 .'-
VZO = % = :S}- and VZ1 = vz b)

respectivly. ¥e will call Vz the gradient with respect to
T

the r-vector varighls Zr , 83 would be sxzpecied, TFrom ( .16)

we Pind that for cach Are Qr § _ =

4,0V, = Ar‘vzr . . {3.4) ’

Since VZ behaves algebraically like an r-vector, we can
T

use (1.,438) to express it in terms of the standard r-vector

bagis of Qr « Thus we have
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¥, =5 pz-V .
zr P Pz . zr » (3 5)

vhere of course we are using the summation convention dise
cussed in sechion 18) -

By projecting both sides of the operator cegunation (3.5&)
with the finite projection operator P , we get the correspon~
ding decompositicn of ‘\?Y s the gradient wlth respect %o the -
multivector varisble V = P(Z) of the finite geometric subw
space 2J . We skall call Vv the P—gradiezi « Thus in enclogy
to (2.,41) , we have ‘

Vo= Zvv = V\T + Vv G e 4 Vv . (3'.651.)

owrn T c 1 n

We will alszso vwrite

Ve =V, =% ,aa Yy = Y, b)

o 1

for the sealar snd vector parts of V. . INote that g.? i
the ordinary sealar differential operator with respect to the
séalar variaﬁle F ., and Vv is the classical vector gradient
in an n-dimensional vector space.

For the remainder of this section let F € C(Z) be a
differentieble furction 2t 7Z , and have the tangent map E“GOE’.

Ve =V, ri) (3.72)

exists, P is said to have the gradient VF at the point 7,
If § is finite dimensional, a differentisble function will
always have & gradient. But this is not the case otherwise,
as the simple exarple (4,2a) of appendixz A, shows,

When ths gradieat VT exists, it is always equal to the
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grsfdient of its tvangent map, Ie.,

[3

VZF(Z): %IAOVZF{Z)= V_ﬂ_.ﬁ(&) ? b)

whoere A is considered to be the mulbtivector variable of the
lirear map F ., Property (3.7b) is an application of the

operator identity

Vg = ¥V, 49V, ‘ . (3-8)

Hi

which will be seen in seckion e) to'ha & sinple consegusence
of the chain rule for differentiation. The ideabity (35.8)0&!1
also be directly established by using the definition (1) o
show its equivalence to (5.5).

Finelly note that the finite P-gradient

Ve B(V) 2 Yy VoV, B(Z) = V, PA)aVy; 7(B) (3.9)
of the tangent map ¥ will always exist., This mekes 1%

rossible to ezpress 2 F(z) , vhen it does exist, by

s lin _ lim o ;
Vy F(Z) = e Vi Ba(8)oVy F(z) = 2770 i;v FpV)» (e10)
where in this case P, and _V = P (A) ave the finite pro-
Jection operators and multivector varisbles of the standard

geometric spaces 2J(I,) , defined at the end of section 18 ).
Equation (3.10) is best understood with the help of (1.51).

¢) The Adjoin¥ Ilap

Let Fe C(Z) be difforentiable at the point 7% and have .

the tangent map b elof .

The adjoint of a b'mmded linear opsrator in b has al-

ready been defined in chapter 2,, by means of the algebraic -
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equation £.7). We now give a direct amalytic definibion of
the adjoint map F! of the function F @) at the point 2 .
For each B €3, define

F'B)= V, F&)oB= Yy, FL)oB (3411a)
Because of the identity, which follows from (3.113) and (5.1 )’

A0F"(Bj=20V, Flc)oB=F@)0B

for all A,B€Q, we are guarantced that F 1s indeed the

unigue algebraiec adjoint of F defined by squabion (2.7 ).
This also guarantess that l?tfe,ﬁ whenever F is, TWhen we
wish to emphasige that ¥'(B) is the adjoint map of the func-

tion F at the point Z , we will use the notation
=t : <+ - '
F @Z; B )= F B) . b)

We now define the P-adjoint map of F to be

(o) Y, F@a)os = g F)en s LR

It is obvious that if the tangent map ¥ of P is a P-map,
ie., if F(P())= B(4) for each AeQ, then ¥ =71, In terms
of the finite projection operators Pn of the standard geo=
metric ::ub'spaces ,‘Z:J(In) s Ve can express the adjoint' ¥! oof

P by

. id ” P |
ey = 1Y, #(2,(2))0B = 5 5 248) » (3.13)

The exzpression (3.13) should te comparéd with (3.10).

' Suppose now that \?Z F(Z) exzists, We have already seen
how it is possible to express VZ F{Z) in terms of the gra-
dient of the tangent map F (Zecall (3.7b)). It is also




possible to express it as the left gradient of the adjoint
map f‘?, by

Vg ¥(2) = ¥, r(z)o V= #(8)V, (3.14)

whare the gradient VB s in this case, is assused to operate

to the left,

d) Second order Linearigations

Agein 1ot F € C(2) and have the tangent map Fedl .

If F is itself continuous and differentiable at 2 ,
then it too will have a tangeni map,which we will denote by
#e 2013 , Where Eof is the normed linear space of bounded

bilinear operators on @ dofined in section 2b)}. We will call

F the g-tangent mep of F at Z , and say that F is 2-differ-
entisble at 2 . (For details of the theory of higher order
derivatives in a Hilbert space,see [3; 1?4~86].) Several
notations will be used for I ; each has its respective ad=-

vantages, They ars

F,(a) = B(z; 4,B) = BoV, 20V, ¥(2) . | (3.15)

A 2-adjoint map for a 2~differentisble funciion F can

@iso be defined, It is given by

5 1 - A as | . ]
Fole) = Vg Bmoc = Fgse) . (3.16)

To ses bthat this agrees with the unigue algebraic adjoint of

n

Pe“f, dofined by the eguation (2.9) of chapter 2, it is only

nececsory to observe that (3,16) implies that for all A4,B,C,

nT‘ - >
o o 3 - A\ .
AG FB(G) = AOVD PBL'}JI)Q C = LB(A,O 8
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It is possibls, of course, to define higher order
linearisations of ¥, but this will nob serve our purposes

here,.

o) Differentistion Rules

In this section all funchtions will bo assumed to be con-
tinuvous and 1 or o~differentiable as reguired,

First note thabt the opsrations of diffsrenbtiation given
here could all be resbabted entirely in terms of derivatives
with respect to scalar variables. To see this it is only

necessary o observe that

A@‘VZF(Z} é[-%g F(Z+M)]t=0 . | (3.17)

Relation (3.17) follows inmediately from definition G.4)
Hence 811 the familiar rules for scalar diffeventiabtion will
caryry over to this sebting with 1i5tle need of comment. How=
ever several will bs given here to show how they dress them-
selves in this lanzvags,

The Leibnitz produect rule for A-derxivabtives can be sbtabed

A0V, #(z)e(z) = [}.@VZ F(z)]c(z) + F(Z)EQVZ G(Zﬂ , (5.18a)

and foz the gradisanl, by

Y

Z

Hotice the usage of dots in (B.ﬁSb) to iﬁ&iogﬁa what variable
is beinz differentiated., This is necessary because 1t is nob
in genersal possible to commute the order of non-scalar sulti=-
veetors, Rule {5.18&) is equivalent to the Leibnitz rule for

difforentiating functions of & single scalow variable., Rule

ria)e(z) = Vs P@) 6lz) + V, rlz) clz) v b)
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(3.18b) is a direct conseguence of differentiating both sides

of (3.182) by VA ‘o
The familiar rule that Fpartial derivatives commmie” is

equivalent to
Fy (B)5 AOVBeVF = BoVAOTF = F3(4) | (3419)

in this langusge, end can be proved in the eanalogous way.

| Finally:wa give the equivalent of the ¥chain rule”™ in
this languagé. Iek 2°= P(Z) and G(2°)be given, The com—
position G,F of G and F is differentialed as follows:

L0%, ¢[F@E) = [aeV, F@ )]@VZ.G(Z‘) % (3.20a)
Rule (3.20a) can be stated as an operator identity by

.A@Vzéi{a)@‘{?zo =A20FT(vy) o | b)

or ‘in terms only of gradients by

szﬁ'r(vz’)_ *, | | o ' ‘c)

Hote that the last eguality in b) above just eiﬁfesses the

algebraic relationship (2.?} between a lineerx map_and its adw
joint; for"K?zois assursd not to differentiate Bt . HRuale
c} follows from rule b) by differentiating both sides of b)

£) Decomposition

As an important application of the rules of the preceeding
gection, we use then to show how differentiation with respect
to an sevechtor varishle can be decomposed into differeantietion

with respeet to an r— and an (s—r}—véctor variable, rfczfava
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To accomplish this, suppose that

)zzf‘\z ‘.

Thon applying (3.20a) with A = A, and using (1.16b}, we get

= erG (ZTI\ZS_B) = (AJ_’ /\Zs_r‘j .Vz; G (ZS \) . _ (3.212a )
Differentiating both sides of this equation by V, aives
x
VZrG (Zz' A ZE"I‘) = Louy UZ; = (Zg ) )

with the help of the algebraic identity (1.192) . Finally

differentiating both sides of (3.21b) by V, , and using

[0
the Ieibnitz rule (3,18b) and the differentiation formula

(A.2b) from appendix A, we find that
- R -
Vg N Vg @20 ) = (r) UZQ G(Zs )

sTx ® (3.21¢)

+ Vg N (245 o(E5)
) S-X i B :
where again we are using dots over the variable vhich is o
be differentiated, If € is a linear function, (3.21¢)
gsimplifies to .
Vg A Vg olpghz, )= (H)Vz‘ ez;) .  a)

=1 r r 8

since differentiating a linear funciion twice givés 0.,

Continuing the above process as far as possible leads fo

the simplicial deccmposition of differentiabion, In terms of
simpliciel varieble 2z , previously defined by (2.13a),

relations (3.21b,c) become




and

Vs Glaz) = Vge elzg) + & Vgmalmamy U Jelay) o )
vhere

V; = Vzg = VZS{\ Vo A -A Vi (3.232)

is dofined to be the sicolicial s-sradient with respect to the

simplicial veriable z- . Note also the conventicns

4 ' . ;
E"i and V; = vZ - ?3)

LF

i

Pinally vhen G is linear, (3.22b) aimplifies %o

Vs G(zg) = Vyr alzg) o | (3.24) |

This shows that for linear functions, simplicial differentie-
4tion is eguivalent to sevector diffeventiation, Simplicial

difforentiation was first defined and studied in [25],

' g) Tunetions of Several Vector Variables

Suppese that F(z:i"- 325 "',zr) is a G=valued function
which is continuous and differentiable in each of its vector
variables z,¢€ 9'i at the mpoint® (21,2 5 “',zr) ‘e 1t is
natural to define tangent and adjoint maps for F at the

point  (2,,%5, **4%,) BY

) = AGNZ F(z5y --792,) Tor each 4 € g, (5.253.)
and

iT{B)E Vi-.-F(Z1."',Zr)QB for each BE G 4 b)

These~dcfinitions are similar o the definitions (3.1) and
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(3.11) respectively, ezcept that r-simplicial differentiation

replaces mnltivector differentiation, This change, however,

doeg not affect the bagic relationship (2.‘?) between a tangent

nmap and its adjoint, as is sesn in the following idenbiby:

- Y
F(A)OB = A0V Plz,, "*,2,)0B -.-._A@F(B) % (3.26)

To gain further insight into ths nature of these meaps

we consider a special cass, Ieb

F(z,z,-..,zr)zf“(z,l)fefza}'“ fr(zr) i .(3.2?)

where ecach fi(zi) is a continuons differentieble vector-
valued function at the point 25 o with the tangent map 1 &
Then with the help of (1.1%b) we find that

f;‘(a,!/\.../\.ar)= ngn(o*é)}“(aq)ﬁ'”f&?(a%}} (5.28)

:0""-:-

. where g3 is a permmtetion of +the indicies 4,---,r ,and

sgn(oz)= +1 1is its sign. From this it is clear that T is
the antisymmetry operator on the r tangent maps 33 y 1€iZr
Equation (3.28) simplifies considerally in the special

case waen each fi = £ , and each Z2y =3, for i=1,'"",r,

In this case (3.28) becones
]E‘(a,!;q“,;\arj =r! £ yA-AER) , ~ {3.29a)
and the adjoint map is
- L T— O'f ) ' y
FT(e.,l{\.../\ar).—.ri:E (a,i}}\vnf\i‘ (dr) o | 'b)

Because (3.,29) is important in the study of linear maps,
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as will be seen in the next chapler, we introduce thae special

nokation
o) 2+ Fa )= f@)A--AEG,) (330a)
Forl - o r 1 T - o
end |
« T 7 b‘t‘ -T +
2a(8,) = = ¥ (A )= 2T )N N R) b)

vhere 4, = a?/\.,,ﬁ,a

y + WO aro also implicibly essuming

the conventions

£:(a) s £(a) , emd £(¢)= &
+ o f - %)
:E’,i-['a} = fT(a} ya0nd fo(o)= g % '

for all vectors a€ Q' , and all scalars ¢€9° 1
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4, Linsgay Analysis

All the inforpation ebout how a differsntiable function
behaves at a point in O is ccniained in the behavior of its
tangent and adjoint meps, and higher order linearizationa at
that point. Te would therefore do well to further uvnderstand
ths behavior of linear functions on Q. In this chapter,
then, we shall only be interested in bounded linear functions

Fel , and their bounded linesr adjoints- FTE £ , as defined
in section Zb),.

4 trivial but important conseguence of definitions (5.1)

and (3.11a) is that for a linear function,
ﬁ(z‘) s F(Z) , and B'"r(z) = ?*(z) = (4.1)

Je,, the tangent and adjoint maps of a linear fuvetion are
identically the linear function and its adjoint respactiveiy-
Thus for linear functions no further distinction will be made
(by the use of dots) between then, lote also that by (5.24),
no distinction need be rmade between simplicial and multivector

differentiation of linear maps,

a) The Gradiaont of a Linear ilap

We have already cbserved that thes gradisrt of a linear X
map may unot exist. In this scection let FeL be a map for 23
for which Vf F(zf) does exist. The following twe identities; i
which are termwise eguivalent, are an easy consequence of the ‘

basic algobraic identity (1.21) , the linearity of ¥ , zond
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the antisysmetry of the outer product.

Va F(zi,) = vi‘:F(‘%i) + \7;-_1{171/\ 13(211\ z—r—_::lﬂ
4"'.2&
Fore vr'[vﬁ A F(zmﬂszr)] + Vfr-f\F(zf) ( )
-and '
Vg F(z5) = VaiB(zz) + Vrr\[‘?’m'mﬁf‘\ zz‘)] )
: : b
veos VA [Ty (A » Ve F(z)
Exanining (4.2), it is easy to see that .
Vs Plzg) = VaB(zg) if V,A F(z,A255) = 0, (443a)
and .
Vs F(zg) = VgAF(zg) if V12E(zyA Zgm3) =0 « D)

However, the conditions given in {4.3) are only sufficient to

guarentes the conclusions,

We shall call the condition that
g . T 4.4
- V,AF(z2AL,_,) = 0 forall A, ,€Q R _ ( )

The Bianchi condition because, ag we shall later sse, it
implies %the so0 ecalled Bianchi idenitities of the curvature

tensor. Turthermore, we will say that 'F is completely sym—

metric if it satisfies the Bianchi condition (4.‘{»}’.

We conclude this section with two ussful identitiss: '

Flzo—-AA ) ZTor sér , ’:%.553.]

T=5 " ¥

A iy Blo,) =

8 Vi =5

and if P is homopencous and complebely symmetric, tThen
A Vz Flog) = Vg Flzg)-h, for all »,s . b)

The identity a) is a direct application of (3.2‘11:} to the
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linear mep F , and b) is a consequence of (4,38 ).

b) Belationship bebween a Linear Liap and its Adjoint

let Feslgr*r), the set of bounded (r,r)-homogencous
linear maps. The following identity, which can be proved by
induetion on 20 , and the algebraic identities (1.18a) and
(1+192), gives a direct relationship between an (r,r)=-homo-
gepaous nap and its adjoint,

by [T AR (a5 )] = (85 V) [V A (o M)

— A -\cr -—-—- — — PR

(Ar Vs) Lvr-EAF(zr-aA gz) + :

r , it
+(=1) (Ar Vﬁ)'£v1 A F(z,‘ Az )J

=)™ [p(a;) - (2, 1] .

In the gpecial case that F sabisflses the Bianchi condi-
tion (4.4), the identity (4.6) gzives

Ty | r S
F(a,) = F(4,) for all 4. €097, | (#.72)

ﬁhich can also be obbained from (4.5b), Thus we -see that the
Bianechi condition (4.4) is suffieient %o guaranies that an
(v,r}=honogeneous linear map is symmefric.

A simple but important example of a symmebriz linear map,
#haich is also compledely symnotric, is the finite projection

operator P ., Thig msans that
S
PA) =P (A) for all A4€Q , b)

and also that




VZAP(ZA-&) = VAV AP(A_} =0 forall AecQ. ¢)
The identity c¢) is equivalent to the property that

VZAP@)= LAY =0 . d)

¢) Onbermorphisas

A homogenecus map f < f is said to be an outermorphism
if 1t preserves the outer product. Thus if

£(AAB) = £(AJAE(B) for all ABg G, | (4.8 )

then £ is en outermorphism, Fron (4.8 it is clear that an
outermorphism is completely determined by its walues on 91 .

Goﬁvarsely if a bounded linear map £ on 91

!
is given, 1% : ?
can always be extended uniquely to an cutermorphism on O by

defining : ' !
!

Sos i £t B M 3 gy E : " Sda i
E(a)= rZ__xo £(<a%>,) | - (#.9) |

where f5 has already been defined in (3.30) of chapter 3,
and has the desired property (4.8). Thus no distinction in
gymbolism will be made between a linear map on Q‘l s and its
extengiocn %o alk of O given by (4.9 _ ‘

In a ginmilar way, by using f; s the adjoint i‘f of f
iz extended to the unique adjoint oubtermorvhism on 81l of Q-
Again no symbolic distinction will be made bobween the ad;}oint:‘-.\'
of a linear map on 91 y e.nd the ezténded adjoint ountermor—

phism on all of Q .

=t

The important general slgebraic relationship between an
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oubermorphism and its adjoint is now given. It can be es~
tablished directly from the definitions of £ and £’ , ard
the algebraic identity (1.19a). Thus for A,eg’ , Boeo®,

' i T
f{ar)-ﬁg = f;%r'f (Bs?] for r3s , B (4108 )
and '

T : T
Ay f (Bg)=202@)B | for réa ., b)

Note that in the case 'rzs', both parts of the sbove relation-

ship reduce to
g . ,
f(ﬁr)'nr - Ar.f (Br) » _ . G)

the basic relationship between a linear homogeneous map and
its adjoint, In section e) the more general (4,104,b) will be
used to algebraically invert a non=singular mﬂp."

The trivial identity

| a.[v,f/\f(z_,;j_] =f(a)-2(a) , o (4a11)

hes already been encountered in the more generélu(q;éd; and
implies that the Blanchi condition (4.4) is eguivalent %o

£ = £’ ., This means that a symmetric outermorphism is always
compietely symnetric. _ '

To finish this section, ouisrmorphisms of linear maps
vhich are the sun or product of tﬁo linear mans on 5}1 ara
given, The proofs core simplé caloulationsusing %hs definition
(4.9) and algebraic identities, but they will noi be given
hers,

If hi{a) = £{a} + g(a) for all aeagﬂ , then

hY r—S

X : :
nia ) = s—%%. {\—;E_ AVew] 2o breln.) (#.12a)

......-.F....._...._..‘._.__
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) R
and if h{a) = fg(a) for all acg' , then
: ot [t

(8,) = f%{ér}‘] +emd h{a)=¢g [f (Ar)] " )

The relationship a) will be used when discussing the char-

_ acteristic polynomial, Relationship b) has elryeady been

encountersd in the form of the chain rule (3.20a).
Oubexrmorphismg were first defined and siudied in @5},

~and details of proofs omitted here can be found there.

d) Existence of a Reciprocal Basis

“As iﬁdicated in section 1g), a given basis Eaig of S§i
mzy not have a reciprocal basis Eéj}-¢ In this secticq we
give & necessary and sufficient condition for a basis iai}
to have a reciprocal basis E&j }, and indicate how a recipfo—
cal r-vector basis cen be constructed msing outermorphisms,

An outermorphism £ is uvnicguely determined by its values

. on any basis of 97“1-~Eor the ziven basis -Eai§~-we dafine

a unique outermorphism £ by specifying that

£(,)=p; foreach i¥ , | | {#.13a)

vhere gpiz is the standard besis of O1 defined in sec—
1g).' The basis Eaig will have a reciprocal basis Eai}
if and only if the oulermorphism f is bounded, and hence
has =2 hounded adjoint fT-. In this case the rseciprocal

basis is given by

W

a’ f?(pj ] for each F&1 , : B bj.

as is easily verified by the identitby




. )
ai-a3 = a;-f (pj) = f{ai).pj e pi.p3 .
, .
Similarly, the reciprocal r-basis ca © { is given by : b
Y w7l
at = fT(p f) for each 1% jf Lo » c)

as can also be easily verified,

¢) Hon-Singuler Cutermorphisms

et fef be an outermorphism. The oubermorphism £ ig

said to be 2P nonasihaulag if

£(1) # 0 , where I = I, is the pseudoscalar of_th(#.?&a)

and non-ginpulay if

Noting the ildentity
+ : T
anf(‘?n) = I vanf(vn) =1 2(I) = 3,(1) , (#e152)
which is. a consequence of (3.5)5 it is clear that £(I) # 0

is equivalent o Y4 I(V 0 . The mmltivector J.{I) is
v, n = x

a generalization of the Jacobian of a mapping, for in the

case that £ is a (P,P)-map (recall definition (2.4b)),

anf(?'n} = I 2(I) = det(£) . : v)

Note also that

I Vy 200 = Il = j#1° | o)

e

£(A) # 0 for each non-zero Ae 0. b) s wa
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The following forrmlas are the formlas (3.12) and (3.13)
gtated for an oubterporphism f£&L . They are given agein '

hers for easy reference, The P-ad,joiﬁa‘b of £ is given by

P(a) = Uy 2(V)os |, (#.16a)
and for increasing ?n has the limit
P
i lim n
(A)= V, £(2)0A =0 F (a)y , b)

vhers iPn} ié- the standard sequence of projection operators,
tow et 9 = P(I) end P = YE") be two finite sub-

algebras of Q . Te will say thst 37 snd 1~ are f-related

if £ is a P non-singular outermorphism with %the property

that o
I'= ]f(z)l"‘ 5 © et [ea7e)

If & and Y* ave f-related, then the Wehein rale® (3.20c)
relating the finite gradient operators of ¥ and 3 is -

Ny = Yy (V)0 TVgn =_fP(v,}:) R — b)

For the remainder of this section we shall assume that § end
B’ are f-related. |
The identity

' 2(z) = Vg £(V,) = (VL) Ve = £R()T T, (4.18a)

vhich is a consequence of (4.156) and (5.44"}, suggests the
close relationship thai existe between f and its P-adjoint
fP . Vo have already seen in section 3c) thet if £ is a
(P,P)-mep then £° 2 £ , and it now follows fron (4.15b)

and (4.18a), that for (P,P)=naps
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det () = aet (£7) - b)

Note also that taking the norm of the identity (4,18a), and
using (4.158), zives '

le(x)f = Jivg £tvg)]| = }fP(I')]= l ! . e)

We now show how T ecen be inveried in terms of i%gs Pe
agdjoint, This is accomplished in the following three cqui-
valent steps., ILet A€, then

A" = 2(8) | (4.19&)
£F(a°1) = fF[f{A)-I'jz |2(m)|az ) b)
£7a% )= [Pl £Farr) 1 - a e}

The fundamental property (4.10b) is used in step b) and
(4#.18c) is msed in step ¢), When £ is a (P,P)map, (4.19c)

simplifies to

‘r' - _1' : . .
)= fdéi %}i for all A'e Y ,~ _ a)

but this formula is still more general than the closely re-
lated formmla for inverting a linear overator in mabrix
theory, since the domain of £ is 21l of ﬁj} and ﬁot only %ﬁ i

- More gensrally, the reiationship {4.16b) suggests that

it is posszible té invert nch-sizgular bounded outermorphisms

in terms of their bounded adjoints.

£) Cheracteristic Polynomials

The cxposition of this section follows the one Tirst

given in EEBJ. It is also clossly related to, but much - .

%

P
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simpler than the one given in [8; 165] -

et f€f be an outermorphism, and let P be the fini‘t.e
projection opsrabtor of soms geometric subalgebra ZI(In) -« Eor
each scalar A we define the oubermorphisnm h, by spacifying

that

b,(v) = £(v) - 2P(v) forallv e . (4.20a)

(Wots that P is the identity operator on ' ). Recalling
(#.12a) , we find for each V,eYH™ that

o2 - o
no(v,) = go(--z)f'ﬁvr-(viwﬁi) vph2lvg) X b)

Diffeventiating the expression b) by Vy , and using the
. : r

differentiation formila (A.2c) given in appendix A , we

caleculate

YE(R) = Vy_n,(T,) = L™ Vg 2lg) AE eezna)

for ¥ = 0, +,n , The polynomials ‘V;,{Z} are called the

gensralized characteristic polynomials of £ with respect
i:o- the oprojection operator P . Hote that 1. ..o they arve,
in general, polynozaials in A with mitivectoy coifficients.
For the remainder of ¥this gection, however, we s.hall only
consider V()= HL’;‘, (A), vhen £ is a (P,P)~map. In this
case, Y(A)is the usual characteristic polynomial of the

linear map £ : 51-— 2 . From (4.21a), it tollows that
1 .
Y- -k =l
H)(A)z kgo(—‘l)n Vg'f("i'}‘i') -)\!1 g 2 h)
end from (4.15b) that

Y= Ty B (v,) = covn, ) o}
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ag would be expected.

Ve now prove the well-known Cayley-Hamilion theorem that
\F[f_]{v) = 0 for each 75;75?. s .(4.22)

ie,, every linear map f on ﬂjﬂ satisfies its characteristic

 equation, O0f ccurse for {#.22% to have meaning, we must agree

to the conventions

() =P(¥)=v forall ve¥ | G _ (4.@3&)
and recursively, |

fk(v) = f[fk“‘(v} for veoy and k , b)
The Cayley-Hamilton theorem is sstablished by showing the
(n&1)5t-term of (4.22) is the negative of the sum of the

other n terms. Thus, using basic differential and algebraic
identities, we find that

Vafy V=7V I = Veer [Zamg A2 07)]

= Viptg M) Vﬁ:i'fﬁ'-?/\f“’ﬂ n1

= = e ¢

Vg famy £ = Vg fap 2 (v) + -0
+ DT vy

Another familiar result froa matrix theory is that the
characteristic coifficients of (4.21b) can be entirely ex—-

pressed in terms of the traces
Ty _ o T
Te(2f) = VI = VI(v) . (#.24)

by using the recursive formula




Ve £(vgs) =-—%-.- i Ve £ (V) V25 for >, (#.25)

- =3
This is directly established in the steps
. a. e
Vgt =5 { Ve AV (8 A2
1 ~
=5 3 Vs Ty 9 (Ve AV
4 =3 Vs igm VT - Vgt
soeen (f)™T et L
B

1)'(&’“5-‘.’2)}

V£

T2
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PART 1I

GEEETRIC STRUCTUEES
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of Linear Haps

Recall the definitions of the normed linear spaces L
and P‘f“P ziven in section 2b ). These spaces cen be made

into rings by defining the usual operstions of composition

[F+G](A}5F$)+G{A) , and I(5.1a)

re(a) =rle@)] - b)

With these operations & is a ring with unit @ , the pro-

jection operator onto O @efinition (1.42)). Similarly, with

these came operations ,?“EP is & subring of £ with a unit

P , the projection operator onto the Tinite subalgebra 2 of

Q ., In fact both L and PaﬂP are Banach algebras of ygnaae

operators on the Danach algebra QO . See [3; 221] and [21; 2].
The ring JL can be used to generate a polymomial ring H

éoﬁéisting of all finite algebraic sumg and products of the

elements of &L '. For example if F,Gég{i, then
E = B[F,6,7¢](@,B,0) = Fa)a(s) + Flo@)] € M . (5.2)

In this example B is the value of the gbove polynonial ab
the ®point® [F,G,FG] € L x£x8£ , vhich in turn is evaluated
at the "point® (4,B,C) ¢ ©xQxQ , It is essential %o note
that the operations on the ring N are the same as the alpe=-
braic operations in the geometric algebra U , and are there-
fore different than the operations of composition (5.1) gi‘ﬁ'eh
on the riag £ . In order to lessen the possibility of confu-

sion, we shall gsnerally use the lettera E,F,G to represent
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elements of oL s 2and H,K to represent polynomial slements
of N ., However, note that as a subset £ < N, Similerly,

"the polynomial subring - p Hp of Y cen be constructed from
the elements of P‘i? .

a) Ring States

By the gtateg of a rings L we mean the set ,43 (af) of all

bilinear transformations X,
X: @¥xL— £, ' ' (Se32)

An element X € J(£) is called a state of &£ , and we Bhall
i-‘z_w;'::L‘:i.te

XFl= Xps ] E b)

for its value at |{a F]691x£ « If X satisfies the additional

propverty that
<EERIY, = X [<F >, ] for all 0 . _ " o)

then X is seid to be a homogenecus state.
The lineerity of X in the varisble F €. f can be expressed

by the additicn formla
%{F-{-GJ:_X@J-r ¥ele ks : (5.4a)

Because X[FledL, it can be mmitiplied by elements GeL by

the ring operation of compesition, Ie.,.

¢ X[PJed , avda XFJe ef . , b)

Sinilarly, by the staftes of g polynomial ring H we mean

the set J{X) of all bilinear tremsformations K ,
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X: o'« ¥ N i _ . (5.59.)

An elenent A € 2{?‘() is called a gtate of the polynonmial

ring Y , ané we shall write

X[E] = Xia; g] b)
for its valne at jf:a;. H] € de H , just as we wrote (5.5‘0)

for the ring § . The state ¥ is said to be homogencous if

it satisfies

< ¥ IE] >y = 'XE(H‘)T] for all 20 , : c)

Since as a sudset J(C W , it follows that as a subset

AqH) 3(L) ; (5.6)

when the domain cf the states in ,3('}{) ‘are restricted to £,
The corresponding formulas to (5.4) for elemsnts of ﬁ(ﬁ)
cen also be writien for elements of ,3(?{) , but care must
be teked to interpret the operations of addition and mmltipli-
cation as polynomial addition and multiplication. With thig”

distinction, the corresponding formles to (5.4) have the

game form _
X[gsx]= YE]+ XK] o (sa)
and :
‘B X[KJeH, anda X[KHe K, for H,Ke ¥, b)

but have quite different interpretations.

b) Dexrivations and sStructures

By a derivation on the ring aﬁ ve mean & homogenceous
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state Xe 3(L) which satisfies for all F,Gef ,

x[2e] = x[=Je + X[ - [5s80)

Intrecducing the symbolism

trie

(B) = F (B) = ¥ [a; F](B) for all a,B¢Q, v

the property a) takaes the more workable and familiar form

JFG],(B) = EG(B) + FG,(B) . c)

As an application of (5.82,¢), let T = Q = G where Q is

the identity map on §Q ., Ve then find that
Q,g(B] =0 for all a,Be Q. - (5_.9&)
Ilore generally, any map F ¢ L which satisfies the property
F,(B) =0 for all &,Be $ , _ ;o b)

is said to be constant on Q with respect to the derivation X',

Ve see fronm ’5.9a) that @ is constant bn Q with respect
to each derzvat;on on qﬁ

- By & deri*.ratian on the polynom.al ring 7{ we mean a

. homogeneous state 'XG,E('H) which satisfies the corresponding

ruls to (5.8a) for the product of polynomials in H « Thns we .

reguire that for all H,Ke X -

X[] = XEE s EXE] . (54100
In the complementary syrbolism to (5.8b), (5.10a) takes the
suggestive and usable form )
- I - i '
[HKJa = H X + HE_= X [as }E] % b)
or even the still more abrsviated, but eguivalent form

(K} = iK + HE = X[HK] . c)
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Azain it is essential %o remerber that the nmltipliéation in
{5.10) is polynomial multiplication, and not functionel com-
position es in (5.é$,cj.

As an application, let H=f = K in (5.10b) where £
is an oubtermorphism. Then, by taking outer product parts and
using the basic property (4.8) of outermorphisms, we find thab
for all A,BeQ end aeg1 that

£ (AAB) = 2,(8)A2(B) + TAIAL,(B) . 0 (5411)

The relstion (5.11) expresses the importaht derivation rule

for an cuterporthism,

Finally, by a geonetric structure on & we shall mean a
homosensous stete X € J(H) which is both a derivation on H
satisfying (5.10), and (when restricted to &£) a derivation on
£ satisfying (5.8). Since the concern of the remainder of
tnis work is the study of geometric structures, it is worth
while %o collect their propertieé here in terms of t}.ie sjm—.
bolism which will be r-.:lost:_ often 31__59(_1. For F,G éc{f i E_he s

geometric structure X satisfies:

[F+a](a)="2(2)+c(a) , (5.12a)

[F(a) + G(B)], = Fo(A) + G(B) ' | - b? -
[FG] (8) = F6(a) + Fa (4) _ c)
F@eE)], = E’a(A)G(B.) + Fla)o,(B) g)";_‘-

A few simple but important properties follow gquickly
fron (5.12). ILetting ¥ = 0=C in a) gives

0,=0 forall acQ' . (5.13a)

Letting F=¢ and G = 0 in b), and using (5.92) and (5 43,
- ?
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gives

[A]a & [Q(A}]a.z Qg (4) =0 for aeg , 49, b)

Finally letting F = @ in (5.12d) gives
A G(B)]a =4 G, (B) for all a,A,B € Q. c)

he properties (5.13) should be recognized as the ordinary
rules of differential calculus. But note that in this frame-
wori, “conutant s" are always replaced by coanstant maps, sand
that only maps are differentiated,

Because the projection operator § on O is constent
(recall (5;9a3), we will say that G is flat. If is because
9 s flat that we are sble to assume that the gradient Vi
under the struciure X behaves like & constant. This means

that

1t
o
.

[v,], = x[9,]

This property makes it possible to Pcommubte¥ the gradisnt and

(5.14a)

structure operations. Thus for F.E¢£ »

Lvg #(3)] [v r(z)| = YV, X[p@)] sV, 2,(3) . 1)

The following important properfy is seen to be a simple

consequence of (5.124), (5.14b) and (5.13b):

4]

[F (nﬂ V F(2)0 B] = V, I (%)eB FZ(B) . (5.15a)‘

In words (5.15a) says that the derivation of the adjoint of a
map is the same as the edjoint of the derivation of ths map.
It immediabely follows from (5.15a) and (4.7),that for a sym—

metric map F ,

F,(B)= F (B) for aliaBeJ, b)
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and in particuler for the finite projection opevator P ,

T : 4 v
P,(B) = P,(B) forall eBec 3 . _ &

Thus derivations of symmetric maps are themselves symmeﬁric.
A final sirple but important ccnsequence of (5.14a) and

{5.13b) is
[Vyla

P20, = Bl02) & (5.162)

where V% E‘I’(Q% } is the gradient of the finite subalgobra
D . From (5.123) and a) sbove, it follows thay for Fe L,

Lvy 2] = 2,(Vy) 22) + Ty FalV) b)

If F is a P-map (recall def, (2.42)), {5.16b) simplifies to
vy Bv)], = (W) (V) + Vi B (V) e)

By compering (5.,16) to (5.14), it ie seen that the darive-
tion of the DPegredient of a map is more conplicated than the

This complication is further

reflected in

[ e)]e = [vy ron], = 2,[F"6)] » Be) ,  (5.178)

vhich is tke corresroanding exprasssicn to (5.15) for the deriva;g

of the P-adjoint of F . Iiotice that this expression has a
tern involving the full adjoint ¥l of F ., If F is a Pemap

(5.17a) can be wrilfen

o : - =) \
[F°(8)], = B, F'(B) +Fo@®) ., v)

since for P-naps FP a7 . In particulsr, whenm ¥ =P in
b) ebove, we get

P(B) = PP(B) + Pﬁ(ﬁ} for all1 a,Be Q , c)
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since P' = P, This shows that ?,(B) = Pﬁ(ﬁ) only when
P(B) = 0 . Contrast this situation with (5.15c).

The extra terms in (5.16b,c) and (5.17) are of course
due to the differen%iation of the P-gradient Vg '.*;hich,'

‘unlike Y, , is not necessarily constant.

¢) Powers of & Structure

Let X Ve a structure on Q , and let H be an arbitrary
polynomial in "H . The structure X can be successively ep-

plised to H %o gensrate the seguence

= e 2 '
%y W] 5 HEE] o v TR » e (5.18a)
of polynomials in J ., Alternatively, the polynomials can be

given recursively by

xXml=H, X'E]=xls ],
and b)
b kﬁi] = ‘XREL,I, ferafyd H:} =X [ak; ‘Xk"“ [HJ] for k1 .
”Xk is said to be the kth-power of the structure X, 1% is-
clear from (5.18b) that X[} wvill be mltilinesr in all
its varisbles a,, -+-,8. ¢ 91 end HeH. If, in addition,
for each H e} and 1€rde , ')(r[a,;,- TN H] is symmetric

in the variables Eet,!, ...,ar] , then we will say that the X'b-

porrer ’Kk of the struciure ¥ is Kk-regular. W¥e allow the
2liow the possibility that X=o . Generalizming the sysbolisnm
adopted in (S.Bb], we wribe

Hy e, = X0 E]=X [:gk"" E1]= (B, vy J oy ©)
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for.the kthhderivation of i , For the remainder of this
work, howaver, only structures vhich are 2-regular will be
considered, even if not always explicidly stated.

As an application of the ebove notation and the struc—
tural rules (5.12) and (5.13), we caloulate the 1°'~ and 2%

derivations of the example (5.2). We find that

Hy = F (A)G(B) + F(A)0,(B) » FG(C) + FG,(C¢) ., (5.192)

and

H&’b = Fa,.b{.é.)G[B) + Fa(A}Gb{B) + F.b(A)Ga(B] '+ F{A)Ga’h(BJ .

. b)
(- _ + ?a‘ba(c) + F G (C) + FG (C) + FGa'b(O) ¥

liote the two Leibnitz product rules at work for the two dif=-
ferent kinds of products. Also acte thab

2,0 = .2 c)
sines X is 2=regular, This is of course analogous to the

property (3.19) of chapter 3.

d) Integrable P-Structures

A structure Ap on Q is said to be a finite P-Structure
if for cach Fef and a,BeQ, ' B

F(B) = XP[a; F]{B} = 'X?[P(a); ’f‘] (B) = FP&-(B) - (5.20&)
If in addition the projec‘aioﬁ operator P satisfies |

PP(b) = ByP(a) forall apeg K

then the structura ')(P iz said to be an inbepreble P-struchure.
(I% is possible to genmeralige (5.20b) to include the notion of

torsion, by modifying it to read

p(b) - BE(2) = T(aAb) , (5.200%)
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vhere the torsion veector ... = T({aAb} would then be subject
to certain integrability éonditions. Howsver, this generali-
zation will not be pursued here; we will always assume bhat
T{aAb) = ¢ in this work,) Henceforth only 2-regular inte-
grable P-structures will be studicd in this work,

YMow let £ be a_(PﬂP)-outernorphism. The oubtermorphism

£ will be said to be (PLP)-intecrsble if

£,P(b) = £,P(a) for all abe g . (5.21)

It follows from (5.20b) that the projection operator P is
(P,P)=-integrable. ' _ '

Finally let us see what (5.20a) implies about ﬁad-darivau
tions with respect $o a finite P~structure., Using (5.12¢) we
take the derivation of (5.203) with regpect %o a vector b ,
gotting -

F&,b(B)

L]

Fa®ily = [Fpa(]]y = Fpa,plB) + Frga(B)

= Fp, (B) + Fpé?rp) . (5.222a)

The last equality follows by applying (5.203) to the map Fae
L « The extra term arises fronm differentiating the P, and

0f ecourse must vanish when P(a)=a , ie,,

- T R b

ya'h{B) = ﬁPa’Pth) whenever P(a) = a . b)
Corresponding mles for higher derivatiocns can also be found,
buv are not nseded in this work.

e) Structural Gradients

Let 'XP be & regular integreble I-struciture, and let H €

s Hp » where My is the set of (P;P)-polynonicls gonerated




—~

ez

by pLp -

By the structural pradient of H we mean

Vg By = Vil + Vo AR, . : (5°_25)

The right side of (5.23) decomposes the structural gradient

into what we eall the structural divergence and the structural

cufl of I .

Since H = PE , by epplying (5.124) ve get

B, = BJH + PH (5.24)
which seperates H_ in%o bangent and normal parts. This for-
mla, btogether with (6.15a) which will be proved in the next
chapter, implies that

ol = ® (VT R) = VB (5.259)
and

Tg AHy = Vo ARE + P (VpAHG) b)

The quantity S(A) = VY, P A is called the shape o sxrator,

and will be studied in the mext chapler,
Higher order structural gradients of H can also be faken
and are impoxtant. For the znd-structural gradient of H we

have, by using (5.16b),
Ve |V = V. P (7)) + V., E  {5.26
"2[ 'f.’-'iH"'—:}‘Te v vg vy g Vo' Uy )
which in turn can be further studied —— dut this will not be
done here. However, ia chapters 7 and 8 we will meet and study

in greater detail the closely related "infrinsic® structural

gradient ,

__,_,...._.__.,...._«.,_',g...... 4
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fJ Extensions of Structures

e wish now Yo briefly discuss an alternative approach
$o0 the notion of a geomeiric struchurs on S , o proofs will
be given here, nor will $this epproach be used furthsr on in
this work. The discussion is only inecluded to throw more
light on the nature of a geomeiric struecture.

Then we defined e structure X, we defined it with domain
a1l of £ (really M, but only the generating set 4 is im=
portant in this discussion). Since the range of X ig COn~-
tained in £ , to generate powers of X it wes only necessary
to successively reavply X (to generate the sequence (5.18)).

Suvpose now inastsad that & structure % is given on the
subring P“E'P of (P,P)-maps. First note that the range
" [P ﬁP] may no% be conbtained in P‘f'P « Thus eztraMcare
must be taken when defining powers of the structure X .
Secondly, it is reascneble to expect that ? and its powers

ey

K can be extended %o a structure X and its powers 'Xk‘ on

@11 of & , and in such a way that the norms iif}?” and H’kal]

are preserved (recall that .3(£) is a normed linear space).
This ic cerbainly suggestive of but no.‘ls equivalent %o the
Haun Banach theoren, since the extensions must be mede pre-
serving the rezations (5.2a) and (5.10a).

Still more gensrally suppose that R is a subring of
ciP , and that a structure X is given on R , It is ree~

£

1
somable to expect that it is elways possible to extend X to

a structure X on ?OQP (vhich cen %then, in turn, be extended

to a1l of &).
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It should further be apparent that when the structure X
in the above coasi&erations is an integral P-structure, then

the gquestions of the existence of substructures end the ex-

tensions of these substmctures, are closely related to the
existence of submanifolds and tue Thitney cmbedding theorem,
It is expected that these and other theorems will find new

and nmore gsenersl proofs in this lancuage,
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6. Derivations of the Prejection Opsrabor, Shape and Curvature

1ot ‘XI’ be a rezulaer integral P-strucbure on O, All
derivations taken in this chapter will be with respeet to this
structure. OFf course P 1is the ‘__projection operator of the
finite subalgebra .

In this chepter we will learn that the "siructure” of an
integral FP-structure is determined_by'the projection operato:
P apd its derivations. Terticularly important in studying

this structure is the shape bivector S{a) of the vector a ,

defined by

s(a) = Vv/\Pa(V} for each aéﬁj1 s (6.1a)}

and $he Riemann curvabture bivector R{aAb) of the bivector

aAb , defined by

R(anb) = V AP B (V) for each aA'bG__Ej_E . ~b)

a) Derivations of the Projection Operator

The éharacterizing ?roparty of the finite projection
operator is T= = P (1.41a), and it is natural that the most
iméortant properties of ths'derivatiaﬁ Py follow from this
pronerty . Teking the derivation of (1.41a) we find, using

{5.122), that

P (B) = P,P(B) + PP,(B) for all a,B¢ g . {6.2&)

As special cases of this we have




PP (B) =0 if P(B) =B b)

Pa(B).zPPa(B} if P(B) =0 . c)

In words, P, takes tangént multivectors (ie. mmltivectors in
%) into normal ones, and vice-versa, Note that it is the
property (6.2b) vwhich makes the Vextrae" term of (5.22a) vanisn
in {5,220}, 45 is necessary.

Taking a and-dgrivation of the equation (6.23) with reé;

pect bo the vector b gives

P, p(B) = 2, pE(B) + PaPh(B.) + BP.(B) + P:-?a;-b(BJ (6.3a)

 from which follow the special cases

PoBp(B) + B,B(B) + PP, o(B) = 0 if P(B) =B b)
and ;

Pa'h{B) =P P (B) + B2, (B) + PPa'h(B) it »(B) =0 c)

Rote that the special cases b) and ¢) do not follow from
differentiating the special casgss (s.eb;c). This is”;ééanse.
the validity of (6.2b,c) is subject %o a funchional condition
on B , vhich would have to be differentiated also, . ' |
Because P 1is an outermorpghism, it satisfies the basic ‘

rule {5.11). Thus we have for all 4,B€¢Q and aeG' |,
P,(aAB) = P (2) AR(B) + P) AR (B) . - (6.82)
It is important to rTocognize the speciai cases |

P,(AAB) = P (a)AB + AAP (B) if 4,BEX, b)
and '

P,(AAB) =0 iz Pa) =0 =2(B) . . e)

Differentiating (6.4&) & second time gives
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Pa'b(AA B) = Py, u(8) AB(B) + B (M)A ®,(B)

4 Pb(A)APa(B) + ?(L]/\Pa‘b(B) i (s8]

winich has the speeial case

Py (A AB) = 2, (4) AR (B) + 2, (8) AP(B) 1f P(4)=0= B(B), 1)

The rolation (6.5b) is interesting in that the left side is a
2nd-derivatian, but the right side involves only 18t~deriva~
tieng, |

Return now to equation (6.4a)s Applying P, to both

sides of this equation gives, with the help of (6.4&)-

P, P,(AAB) = B P (A)A P(B) + PP(A}A P, P(B)

(6.6a)
P P(8) APP,(B) + P(A) AR P (B) .
If A,Be ), this simplifies to
B P (AAB) = B P (AAB + AAR P (B) . b)

The ecuation b) will be used when discussing Riemann cﬁrvatﬁre.
To cbﬂplete'this section we give two icportant conss— -
quences of the basic inbegrability condition (5.20h). The
first is .
[y, ) AZy() = 1™ 2, () A[T,18] tor 5865 (6.7)
and can be esbtablished by an inductive argument on the degrees
of the multivectors, (Tha case for 4, =a, and B =Db is

(5.20b).) The second is

P(b) + PB,(b) = By P(a) for all a,ce g (e.8a)
a

Pa,c
and follows directiy by taking the 2% dorivation of (5.20b)
with respect to the vdctor c ., Reordering the terms in (6.8&)

and using (5.20b) gives
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r, (b} = Py o (@)

» BP,(c) - PP, (c) for ab,ced', b)

or equivalently,

4 ' 4 '
Pa,c(b) . Pb,c(a) = [P.b,Panc} for all a,b,ecly e)

- where the brackel E.’E‘b,Pa]' of ths derivations B, eand P,

iz defined by '
[P '?a] = PpPgy = PPy ' (6.9)

The relation fﬁ.sc) is ciosely related to the curvature bi-

vector (6.1b) 23 we will later see.

b)) Shaps of a Structure

Ve have alrcady defined in (6.18) the shape bivector of -
a vector a 6?31 « 1% is poasible %o define & more general

shave overator on all of Q by

sa)= VP (&) for each 2€Q , (.10 )

- That (6.10) does indeed reduce to (6.1a) when A =a G_‘):‘j/i is

shovn below, as wall asg more general propérties.
To show the eguivalence of (6,10) to (6.1a) for each

vector ac%) , it is only necessary to use (6.2b) end the

- integrability condition (5.,20b) to get

Sa)= VR (a)= V AR (a)= Vo AP(V) ... .° ~(6.112)

 On the other hend if b ¢S and Plm) = 0 , then

V, AP () = LARE®) = AL, % G =0, b)
from which i% follows that

sh)= L2 o)+ VAR B)= B G) . c)
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The first eg_ualitj in b) is a consequence of (5.17c), the
second of (3.12), and the third of {5.20b),.
The integrability condition (5.20b) fmplies that the
shape operator is symmetric, ie.
I ASG) =0 , ' 5 (6.12a)
or equivaieuntly that |

a:5(b) = 2,(b) = B (a) = b-S(a) forall abey'. b

The above equivalence is easily verified by showing thab
g e i 2
@ab)LV_AS(m)) = a-s(b) - b-S(a) for aAbeH® .
Where-ags the curl of the shape operator is zero Ey aj) o
above, in general its divergence is not. This leads us to de~

fine the ghape normel of the structure ')(P by
H{Xp) & VyS(v) = \‘e’v1- Ve Bolvg) o (6413)

The shape normal is a fundamental guantity, but will not be
sbudied in this work,

The general ideatity

S(a,AB) =5(,)AR(B) + [V :P(8,)] AR (B) (6.14a)
+ (1T 2 A VAVERE)] +&D)T P@LAS(B)
" which is trz;le for all A ,Be 4 , forlows frfgam the definition
(6.10), (6.4a), and the algebraic identities (1.17a), (1.18a)
and (1 .-20). Using the generaliped inbtegrability condition

(6.7)s (Get4a) simplifies %o

S AB) = S(A AR+ 1T A, AS(B) for A,Bed. b))

The identities {’6.14&,5) mpake it possible to generalisze

(6.11a,c)s Tor A€ X we find that
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S(8) = ViR () + V AP (2) = V, APg(8) , P[s(a)] =0, (6.15a)
and for P(A) =0
| S(a) = V iPfA)+ Vo AR (&) = Vg P (8) = Pls(a)] . b)
For bothk P(A) = 0 = P(B) ,

S(AAB) = 0 . c)
These identities should be compared with the identities (6.4).°
Note that (6.158) implies that for A€ }H , VP (A) =0, .
which is exactly what was required to esteblish (5.25) of
chapter 5, Note also that the shape operator S takes Fan-
gent r-vectors into normal (r+1)-vectors, and conversaly.

From the last remsrk it follows that the eperabor 5oz
SS will preserve both tangent and normal multivectors, and
algo their degrees, By applying S to both sides of (Bo14a)
and using (6.14a,b) 2nd (6.15a,b), we calenlate the special

capes

s2(aAb)

L

Se(a};’\b + B S (a) = _Pas(‘b}_-r- _aaﬂ__sa(b)__{ :.-.-._.(6.163)
for a,beg1 s 8nd
s2(aAb) = S(a)s(db) + s[a-s(b)] 4f P(a)= 0, P(b)=b b)

In the next section we shall show that the operator s? is
closely related to the Riccl operator,
Several other important relationships between the shape.

operator S and tre derivation Pa are

P, (B} = a:5(B} + S(a:B) for a,B.e,?:} ) (6.17a)

?,(B) =-%—- [B,S(a}j "~ for a,B¢ ¥ , . b)
and

P,(B) =% 2[5(2),B] for P(@) =2, P(B) =0 c)
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where the bracket in b) and ¢) is the commubabor bracket de-
fined in (1.24)., These relationships can be easily established
by applying the principle of multivector decomposition (135 s "

If we lat B =1 in (6.17b), we can with the help of
(1.20) solve for S(a) . Thus we find

+

S(a) = T'2 (X} . (6.18)

a

The above relationship shows that S(a2) is completely deter-

mined by the a-derivation P, opsrating on the unit pseudo-

scalar I of I , and should be compared with (6.112)
Using (6.17b,¢), and with the help of (6.15a,b), it is

eagy to detive the composition formulas

BB, (4) = 3 Pg[s(b),[.&,s(a}]:lz for AED , (6.19;1)
and |
P, P, (4) =-§i—-£s(b), P{[&,S(aﬂ)] for P(A) = 0O b)

The formula b) above will be used in the discussior of cur-
vature in the nexd séction.

Finally we calculate the dorivation of S(A) with res-
pect to the vector b ., Using definition (6.10) and (5.18¢),
we find that

Sy(a) = B (W) Bp(A) + Vg Pv,h(A) for ﬁ,Aeg_. (6.20)

- Thig identity will also be used in the next section.

c) curvature of & Structure

Tn this section we will eoxamine the curvature bivector
and i%ts close relebionship to the shape bivector. A more
general curvature operator will be defined, and several of its

properties studied.
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We shart by ziving several equivalent expressione for

the Riemann curvature bivector, For all a,be rok

R(8AD) = Uy ABaB, (V) = B,S() =2- PB@),5(b)]

(6.21a) ,

i

Yoy Pr A%y B -

The equivalence is guickly established: The first equality
is dei’inition (6.1b), the second follows using (6.1a), (6.2b)
end (6.4a), the third using (6.15a) and (6.17¢), and the last
using (1 .2’?). Iioke that we have irplicidly assumed that

- R(a AD) is a funciion of the bivector aab , but that all omr

ezpressions for R(aab) are given in terms of the vectors
a and b . The following identity gives R explicidly as a
function of the bivector a Ab , and can be easily verified,

R (a AD) =%-(ahh)-vv§PF(v1),S(v2)] . - b)

There is & very close relationship between the curvabure

bivector R(a A'n) and the bracket of the derivations P, snd

P, defined by (6.9). ‘Specifically we have the general
identity '

[Py +2a] ©) =%-[}'{(& Ab),{'}] for @11 Ce Y, (6.22)

which is an easy consequence of (6.,19a) and the Jacobi identity
(1.26). This identity suggests that the bracket [F,,P,] be

called the general curvature operator on . Since the right

side of (5.22) is the commtator product of the bivector HaAb)
with © , some of its properties have aiready been deternined
in section -c).

Several eguivalent ways are now given for writing .22}

vhen C:cgjj1 .

i
H
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RlaAbc = —;—-fn(af\ b).cg = [I’b,Pa](c}z I’a’éb) - p, lo)

¥
. | (6.23)
The first two equalities are a consequence of (1.25) and

(6,22}, and the 1ast of (6.8c).
Potting € = I in (6.22) and using (1.20) gives the

intogrebility condition

[2,.pl(1) =0 (6.24a)
or equivalsntly using (6.18},

7 [1 s(a)] - p,lz s(0)] =0 b)

where I 18 the unit pseudoscalar of ﬁb @

Finally we earry oubt a calculation to show_tha£
s, (a) _ 5(®) = [s(a),s(p)] (6.25)

the tengent part of which, by (6.21a), is exactly =2r(alb)

sple) = 5,00 =V [p, el 2 Gl + B(V)RE- 2T 2

]

Vv v r{aAb) - 2 Pa(V?)APb(v)

. Vv_ 2 (e (b) » 2V rV, %a(v,‘)/\?h(va)

3 Y4 V2 = Y4

= [s),s®] .

(6.20) is used in the first step, (6.23) in the second, (A.20) |

and (6.21a) in the tnird, and {1.27) in the last step.

&) Riemann, REicei and Scalar Curvatures

In this section we will ses how the various classical
notions of curvabture are dressed in this languege and closely

interrelated, Particularly sispls expressions for and proofs
7

of the so called Bianchi identities are given, and it is showﬁx
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that the shape operator is a Ysquare root® of the Riceid
operator,

The Riemann curvature operator 32@1Ab} is comploetely
symmebric since it satisfies the Bianchi condition {4.4). This

is eagily established in the folliowing identity
U, AR@AB) = = T, ARS(v) = -5, [V AS )] = 0 . (6.26a)

The first equality is a consequence of (6.21&), the second of
(6.4a), end the last of (6.12a)., (6.26a) implies that R (a Ab)

is symmetric (&#.72) and therefores satisfies
R@Ab)r{cAd) = @Ab)-Rlc Ad) for all aﬁa,cﬁdeﬁja, B)
Another consequence of (6.26a) is that

R{aAb)e + RBlena}b + R(b Ac)a = 0 for a,b,c eﬁj1 e

%

end is known as the 1°Y Bilanchi identity. The identidy o)fol-

lows from a) and b} with the help of the algebraic identity
(aabic)-[vv,xa(vm)ja (aab)R {cad) + (brc)B (2Ad)
+ (epa)R{bAd)

Prom this identity it should also be apparent that b) and c)
toghther ars equivalent to a), _

The 22% Bianchi identity is established dircctly by
showing

P[V, AR (anb)]= W, !\Vvé_ P.Fq ,v%‘]'Pvéb)

v P
+ Vv(\ ng“ P.g._1(&] Vo

Sa)y=o0.

The first equality is & conseauence of (5.16¢), (5.12d) and

(6.2a), end the second of the symmetry of the verisbles v,

and v, VY, and v in the above respective terms, A more

recognizable (but less umable!) form of this identity is

- (6.2‘?&)_‘
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PR @ Ae) + B (ona) + B, (aAb)|= O b)

end can be esteblished in the same way that (6.26c) was esteb-
lished from (6.,26a), but this tize using the symmetry of B
which follows from (5.15b).

In terms of the curvebture bivector, the classical Ricel

and scalar curvatures are best defined by

R(a) = Vg R(vAa) ' | (6.28a)
and
R = Vv-.ﬂ(‘?] = 2 ‘G’VE R(Vz) w - b)

No confusion can result from using the same symbol R for the
Riemann, Ricci, and Scalar curvatures, since they are respec—
tively bivector, vector, and scalar operators, end doing so
draﬁa_attention to their close relationship,

- The Riceci curvature veckor trivially satisiies
V, AR(V) = 0 ' _ (6.292a)
or equivalently | | | | |
R(@)b = a-R(d) for all e,bed , ' v)
gince by (4.2) and (6.26a)
qv’l/\n(vq) = 'q;,q. [VoAR(v AV, )] =0
The following simple calculation

sBa]= %7, [T rn 6l
- 6430
Vv{b?v_‘\?ﬁpa(vﬂ“ vvﬂ{R vy Na) = r(a) , Ea)

5% (a)

shows that the shape operator is a ®aguare root® of the Ricel

operator, Note also that (6.16a) shows that
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s°(aAb) = R(a)Ab + a AR(b) - 2RGAD) (6.31)

by using (6.30) and (6.21a).
Finally we give several pgeneral curvabure relations which

will be needed later,

[VVQ’R(vﬁ )] =0 ' (6.52)
1 Vo, B2 c] =_f.}_ [vvé. [R (v;).cﬂ’ ‘ (6.33a)

identity (6.32) iz a consequence of (1.23), (6.28b) and @.32b)@
Identity (6.332) follows from (1.23), (6.32), end (1,32d).
With the help of (1.21) aad (1.23), (6.538) implies that

:3?2.[3(72),0} =0 if 6>, =0 _b)
and '

Uy AR (v5),0] = 0 for all Cel | 6)

For the case when € = aAbAc , (6.§2b) is equivalent
to (6.26a,c).
Hote 8lso the identities
W, B(7z)2 =R &) (6.34a)
and _
Ea.vvz},\[n ¥s)b] = RlaAD) ! h)._:_
which cen be easily established. |

Suppose now that in (6.33a), € = AAB . Then using
(1.25c), the righi sids can be broken down into

+ [v‘,z. [REs)a Aaﬂ =4 [‘vvg’ B (vé),AﬂAB

*+ _1"' 'é:[ Wg}:A}/\ [VvﬁtB] + —;}:‘[V é.;&]}“«, @ (Vé'),ﬁ]
+ 3 Aﬂ[vv_a_, B es) B]] ‘

(6.35a)
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which has the special case

-%*- valfl(vg—),aﬂ'h] R(@)Ab + a AR(b) = 2 R 2 Ab)
G o f\‘b)
by using (6.34), (6.53&) and (6.31).

lore generally it can be shown that

b)

i

- vvé[a G5 ),Aj = s%(a) forall AcY. - (6.26)

Thus there is a very close relationship between the general

shape operator (6.10) and the general curvature operator (6.22).

e) Equivaient Structures

We sce from the previous sections that the shape and
ctxr‘éatura of a structure are completely determined by deriva-
tions of the projection opera‘tof. This leads us te méke the
following definition: . _

Two regular integrable P-structures "X and {'5(’\1._, will

be gaid to be equivalent if
P TETE ;
P[&; Pl = '}(P[a; P] for all ael' . (6.37)
How let F GPo&P s &8nd letd

FaEXP[a; 1?] and g‘;:‘:‘ SEZE‘[&; F:I .

Then the following simple caleculation

/"\./"T
= [zr2] - [prP],

=13
I

&
I

{6.38)
= BFP + P P + PFP, - PFP - PEP - FFR

D - TE
}?‘aﬁ P..aP
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_shows that on (P;P-msps Xp and X%, are identical up to their
tangent parts.

If we now define a third structure,
-}EP o FXP A HXP 3 (6-393')

it is easy %0 see theb B{P will be & flat regular inte-

grable I{-_-atfuct:ure, ie, that

?{P[a; P:] = 0 for all a691 'bj_

Finally we will say that & P-structure “XP is a minimun
Pegbtmucture if it satisfies the condition that for each
Fepdy

PFP = 0 for all a&c ok . (6.40)
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7. Intrinsic Structure

In this chapter we sometimes refer to a geometbric

P-structure 7(2, as an extrinsic structurs, and derivetions

with respect to XP' as exbtrinsiec derivations, This is done
to emphasize the difference between the notion of a structure,
until now discussed, and the notion of an lintrinsic structure

to be defined in this chepber.
a) Intrinsic Structure of a ilap

et FeL , and 1et P* and P be finibe projection
operators, We define a (P}P)-map P , called the inirinsic

structure of F with respect to (PiP), by
FQ@) = PPrr(&) forail 4€ 9, ('?.1a} o

From this definition it is clear that & (P}P)-mep F has an

equivalent (P}P)-structure, Ie. if F%n«% then
]

F@) =r@) forall 2€ 9. ' A 3

By the edjoint of the F we shall always meen the mep

F' given by

[N

fT(A) Vz Fz)os = VZ P'I—*P(Z)G)A

(7.2)

.Vz zorr ' P'A) = PR PA) .

We see from (7.2} that the adjoint of a (PP)~mep is a

(p,?"}nap, as might be expected,
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b) Intrinsic Structure of a Structure

.

Iet P and P be Tinite projection operators,

In terms of & regular integral P-structure XP , We now

define a new transiormabion ?P callaed the intrinsic struc-

ture of XP with resvect to (PiP), It is given by

Xp[r] & "% [F]p for eacn re. L _ . (7.3a)

For tha case when ¥P° = P , we will also write

Xp = pXp s b)
and say that P’R'P is the intrinsic structuve of X, .
Unlike 'XP " AXP will slweys take (P}P)-maps into (P)P)maps,

Powgars of ?P are defined in the natural way., Thus the seo-

cond power of X, is given by

XEFlI= % [7P [‘r"]] = 2%, [P YP[F]'P]P . - | o)
Actually, ?? ‘can be exbtended bo ‘}{ o, the aet of
polynomials gemerated by <L . , by defining for all H,K €
H . |
Xplx] = X EE+ B XK] o (7.4)

Since ?P is defined in terms of XP s its properties
are completely determined by those of ‘XP «» In order to more
clearly see what these properties are, we introduce the fol-

lowing shortenad notation; For sach P 6»£; write

F, = ?P EH F] & ot 7<P [a; F]P = P'F,P (7.5a)
and ;

Fop = ‘-)Eg bob; B =2 [f&]bz’ = P EP‘FaP}bP . b)
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' =T
By the adjoint F, of F_ we shall always mean

a
¥ F.o.» i +
F ey = [E] , : (7.6a)
and for the adjoint ?;b o F, o5
’ B
5], =efprir] P = [F, ] b)
ab = 2 1y * Paml

as might be expected, However,a cerbain amount of care rust
be taken in the usz of the bar to indicate intripmsic operations,
or confusicn can ariss, Immediate comseguences of definition
{7.6) are that

T (A)oB = Ao¥F, () (7.72)
and '

o~ : ~ 1 .
.Fa'b(A)@Bx.eX@Fa’b(Bj for A,Be Q. D)

Ve now aeced several simple properties of derivations of
(B3P)~maps (with respect to K ). Tet F GP'OEP , then

. "'.0..._‘ l-‘ r e
¥, = EerP]a=z>ar+PFaP+fra . (7 .82a)

and has the special cases

#

Fo(a) = PJF(A) + P'Fy(2) for all &€ bs, b)

and

i
it

F,(a) = ¥Fp(8) 12 P@A)=0 . c)

Using the properties (7.8b,c) and (6.2 ,¢) we now caleu-

late Fa,‘b from (7.5b6). ¥For I'?eljodf'__? we have

B g &P R ples "B F

“a,b L “a b a 5,87 T T Tgrp

T

rd * "r-. —
PhPar + P :a'bP + F2 P,
from which it follows that for tangent A € 5

»

Fop(a) = BUPIF(8) + P'F, (a) + TR P (2) b)
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F, (€)= §, o) = [B,5JP@) - P[R.2]€) - (7e17a)

.\=
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The special cases of (7.5a) and {7.9b) vhen ¥ = P=P
are of interest, For these cases we have

P (ay=o0s= ‘a’b(.a) for a1l bA .8 e X (7.10)
Equation (7.10) shows that it wbuld_not be possibke to use
(6.1) with intrinsic derivations to define the shape and cur-
vasurs bivectors. In faet in guch an approach the shape bi-
vectér ﬁ@ﬁgd'hﬂva to be given up entirely, and curvature would
then meke its apreareince only in an indirect way as we shall
see belovw. The integrability condition (5.20b) would also
have té be re-expressed,as will be done ia the next chapter,
0f course there is no reason why the advantages of both intrin-
sic and extrinsic derivations eag’t be exploited, depending
only on %the problem at hand which or whother both ave used.

The intrinsic derivation (7.5a) preserves (3P )~maps by
projecting away extrinsic or orthogonal paris, This process
of "projecting away™ in efféct,replaces lost information abouﬁ
the exztrinsiec pert with intrinsic or Pourvature® information,
This now information then finds its expression in the non-
commtat ivity of émtrinsic derivations. We find using (7;9b)

and the commutativity of extrinsic derivatlons, that for P €

L

liote that the right side of (7.11a) involves only commulabor
brackets of derivations of the projection operators P and P ,

In the case thet P° = P we find more explicitly thatb
_ _ 4 ) .
Fop(0) = By o(0) =3 Ram), r)-3- p(enn),d) )

by using (6.22);_
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If in addition F is sealar valued, then the first term on

the right vanishes and we are left with

Fy (C) = B, o) = =4 #(R@nv), o) for T

The relationships b} and ¢) suggest that we define

%' §V1AV20 éjé'[ﬁvqgvéc) e Fvg,v,fc)] . Fvétbj ’ a)
since this guantity is dependent oaly on the bivector V5 =
%— vqx\?g and not the vectors v, and v, independently.
In the next chapter (7.11) will be used when discussing linear
forms on 3 .

As an application of intrimsic derivations,we can equiva-

lently write

v‘ﬂ'hﬁv @Ab} = 0 . (?,123,)
for the 22%-Bianchi identity (6.27a), end |
5, (@) = §,(v) = P[s @),5(b]] = 2R(2AD) b)

for the tangent part of the relatiocnship (B.25). (7.12b)ic &
good exemple of how both intrinsic and exfrinsic derivations

can make their appearance in the same prohlem; the exbtrinsic
derivation is involved in the définition of shape, bub we are

taking intrinsic derivabtions of iif,

c) Intrinsic Structural Gradients

Intrinsic Structural gradients are better behaved than
their exirinsic eounterparis of section 5e).

let Fe d , By the intrinsic structural graedient of ¥

Tie mean

g (7.13)

ey
I
<]
b
+
3
>
=3
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whers ?& iz of coursgse the intrinsic v-derivation of F with
respect to Pﬁ(P . The right side of (7.13) ﬁses (1.17a) to
algebraicelly decompose the intrinsic gradient into the intrin-

sic diverzence eand intrinsic curl of ¥ ., If is immediabely

clear from (5.25a) that if Fe¢ &£, , then the extriasic and
intrinsic structural divergences of F are eqnivaleht.

For the remainder of this section let F€ o, .

The analogous expression to (5.26) for the 224 sntrinsic

gradient of ¥ is

v. pfv_F P=V_V_F . _ (7.148)
Vs [ v, v11v2 Vs ?1 V407,
but is considerably easier o work with, The right side of

(7.148) can be algebraically decomposed into

- _ ) — -
Vv, vva,l % vva Vv1 Fv,l T vvé'\
The second term cn the right side of this equabion can be fur-

F - b)
V1 VeV

ther expressed in terms of curvature. Ve find by using (?.11)
-, 1 [ = ] .
F ) = - F - B ¢
v72 ?1 ,Vé ) 2 VVQ Lrv,] ,v2 ?2,'71 ( )

= —;—- ”Vvé[n{vé j:ﬂcﬁ . _;__ vv;‘ {[R(vi j‘i{}]) “ o

= \7 ? {G I.o
?é Vé‘}

. The first term of the middle eguality can be further analized

with the help of (6.33); The second is more complicated and
depends on F . %e shall better understand the significance
6f these properbies when we meet them again in the next

chapter,
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8, Forms, Fields, and the Bracket Operation

Lot ‘XP be a regular integratieP-structure with intrin-

o
. sic strueture X, , and let Jf.P be the subset of £ cone

gisting of P~forams on 9,

a) Forms and Fields

It is well-known that each bounded linear functional -

o
¥ & £ on a Hilbert space I can be uniguely represented in
the form

P(2) = zoaf ' | | (8.1a)

for some unigue slement AFE 9 » 8nd conversely. (Sea
[33 178] for exampls.) Ve can explicitly solve.for the ele=
ment AT by differentiating both sides of (8.1a) by VZ "

getbting

A= G rE) . b)

The clement AY 1is called the field of the form F, If in

addition F is a P~form, then

AF = Ur@) = VE@)=20") , c)
end A¥ is then called the P~ficld of the P-form F . We

ghall dencte by Q«'? the set of fiecld representations cf the

meltivectors of 9 given by (8.1d), and by T the set of

P~ficld representations of the multivectors of U given by B.1c).
As a simple excercise we use (8.1b) to caleulate the

adjoints of a fornm F , Using definitions (3.11a), (3.12)ana
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(1.13), and (8.1b) we £ind that for each B € 4

'FT(B}

U

V, P(z)eB = V, <F@)B D, = 8 A (8.2a)

and

[}

¥ (8) = V, F(V)oB = pp(F) b)
_vhere ¢= <B o * If in eddition T 4is a P-form, then
(8.1¢) sives :

+ ;

F (B>='F?(B)= FAF . e)
Equations (8.1) and (8,2) show that the adjoint of a form or
P-form is a f£ield or P-field, and also conversa'ly.

we now calculate derivations of fields in terms of deriva=-
iions of their corresponding forms, By directly applying
(5.14b) to (8.1b), we £ind that

7 i
P 2 - a8 .
At s [VE@) L = Vpr(2)=2 - (8.38)

and

P _
AFa,b = [v, ?a(z)jb = Vg (Bl = A abo, b)

In the case that F is a P-form (8.3a) can be writben

e i

o = [vrm)), =2, (aF) + 2(a])
i:y veing (5.16¢) end (8.1c), or alternatively (7.8b). -

From definition (7.5) we now calculate intrinsic deriva-nq
tions of A¥, getting

E-'; <
=T _ — _ a - F 8.5a
i,= V5@ =273 VyFQ@)= P(Aa ) ( )
and - e - :
F ' :
e - = a s _ a,b -
Aap = Uy Fan(2) = Yo ra’h(‘?’) =4 £ . b}

Finelly using (8.5b), (7.11¢), (8.12) ana (i.25b) we calculate

the commutator

zg,b s E‘E,a = E‘a,bm - ﬁh’a@)] - (8.6a)
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-3 g r(Rern),7]) =-3V

R [a/b),7]eaF.

=1 v voR@m),aF )= d- PR am),aT ]
of intrinsic derivetions of the field AT ¢ Q7 The right side
of (8.62) shows that this commtator is dependent only on the
curvature of the structure Xp and the field AT , TFor tke

cage when F is a t-form, (8.6a) simplifies to

P T 1 Fo T b
GE - o =i REm),F]=ReEm)c )
® B
vhere ¢ = V,F (z)e Q "
b) Brackets of P~fields
In this section we study an important P-bracket operas-
tion defined by
{,2], = (1 U)K, - B A(TyiK) | (8.7)

for all H,K € ‘H. ¥e shall be particularly interested in
debtermining the.properties of this P-bracket operation as ap-
plied %o I-fields, even though thé properties are more gener—
ally %rue for all (P,F)-polynomials H,K EP?{P « The P-bracket
is & generelization of the familiar Lie bracket of vector '
fields, and was first defined and studied in [25].

The P-bracket makes it possible to give a still more
general form of the integrability condition .(5.202:) . HNoting
the ldentity

[za(a),r(n}]:? = [P@a): Vg APy B = pv(,@.};\[vv:x»(gﬂ {&.8a)
for 211 A4,B¢ Q , the gencral integrabllity condition is the

special case of this when A and B are tangent smitivectors,
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Thus for A,Be¢ Y we have

[a,8)p = @: VAR (B) - B, (a)A(V,:B) = b)
as a direct consequence of (6.7) and (1 202).
The mos't important property of the P-bracket is that it

proserves P-fislds, e, if AY and B® are P-fields, then
s0 1is [AP,BG]P « This Ffollows easily fxom the steps below

using definition (8.7), (8.4), ‘(6.ob), and (8.5a),
[0F,8%0 = 6% v )ar(l) + Ry )Ae, (60
- 2, (05 )A(T,:8%) - P(eE)A(%,:8%) (8.92)
o ) - EEAG®) = BT

The last line can be taken as the definition of the P-pracket
with respect to. intrivrsic derivations, and shows that the

intrinsic and exbtrinsic P-brackelt opsrations of P~-fields are
identical, For vector P-fields af ana »¢ i (8.9&) takes

the sinmpler form
@F'bGué ) a.F. vv':;;.g:.. 5G.v_v* 83: [aF’bG 1 . '},)'
and should be recogni_zad as being clogely related to the Lie
bracket of vector fields. The fact that Ea. ‘bGJP is a vector
P-ficld is another expression of the Integrability condition
(5.20b),and is the one refered %o in the discussion after ('7.10},
If in (8.6b) we replace the vectors a,b e’ with

- b '? "
representations a":',’bc' €n* , we pgst the more compli-

Tield

cated but perhaps nmore familiar expression

P [ F P E.G T
[ aEJbG [ hG}E‘E E’Gs&EJP ( : )

Eguation (8.1 0} is often called & "struecture equation™ in the

T T




"

89
literature (see for example (?6; ?.4@}); The extra term in=-
volving the P-bracket arises from the necessity of subbracting
off the contributions from taking derivations of the fields
aE, and b% , and is unnecessavry in (8.6b).

We now list and briefly discuss the most important pro-

perties of the P-bracket opexration,
tet AF,BF c%c »¥ . Then

[AE.;: 'BglP = ‘{"7)&-1)(3-1) [BE:A}S; P { 8.11&)
[AE*BF'GG]P " [AE'CGJP % [BE'CGJE b) (

[AZ B AC%]p = [2E,BE] A% 4 (=if~Ns BFA[r,GGJE o)
Voi[ 25 /\BT [ 225 ]AB + (-1)F AE/\[ ~z3v]

b (=)™ E

- a)

L
(Pr-BF‘]P} = [v Ty 'BFFP'* (ﬂrﬂ V BFTP . e

Identity (8.11a) shows how the order of the torms of & P-bracket
may be reversed - paying attention only %o the changes of signs
of its various mulbtivector parts, and is a simple consequencs

of (1.32). Identities (8.11b,c) express distributive type

rules of the P~bracket. Identity (8.11d4) relates tho diver-

. gencesof the outer product of fields to the P-bracket of fields

and is easily esteblished by using (1.18a) and (8,9b). Finally
identity (£.11¢) is a kind of Leibnitz product rule for the
divergence of a P-bracke, and Tollows from (8.11d) with the

help of (8.14b) fron the next section,
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- sum of %he structurel divergenge and gtruchtural curl of A

.tangent pa-ris being the intrinsic curl of A
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c) structural Gradients of Fields

- This section should be compared with the closely related
sections 5e) and 7¢).
1t A' be a P~field., Then
P_ o.,F F '
Vehy = V:ap + ALY (8.12a)

is called the sbructurel gradient of A° , and is the algebraic
r .

By using the decomposition forrmla (8.4), it is evideat from
(6.15a) end (8.52) that '

Gs = Gr 6l v2fd)= VR )
and
V?AA = AB, ¥ )4 YQ/\P(A }..S(A )+ ¥y Ny o)

Identity (8.12b) shows that the extrinsic znd intrinsic diver—
gences of P-fields are equivalsnt. Identity (8.12¢c) separates
F

the extrinsic curl of A~ into tangent and normal parts; the

o , and the nérmal '
part the shape operator of AF | '
Teking & 2nd-intrinsic gradient of AF gives
Ve, Y, zi v, = Vas Ve, 3§1 o, vva_iﬁé . (8.13)
Fe will call the first term on the right side the Leplacian
of AY . For the sécend term of the right we find, using

(8.6a) and {6.332), that

"y ]
VLV T TV

1
-3 W, B ap? ] 4 [Ty B o)

CRELY
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This implies, using (6.33b,c), that

-F F ' :
V., A = 0 when <A 3 S, =0 b
vé vé _ 72 4 ’ )
and _
. AET F F -
v5'""vs =0 for all A EPT . c)

In the lenguasge of differential fomms, ¢) is equivalent to

2

d°F = 0 . But note that in this language it would be super-

filaona to coﬁstmcﬁ an exterior caleculus of differential forms,
Rather, forms are diﬁectly represented as fields, and are then
subject to analysis in the Iframework of geometric algebra and
the theory of geometric structures, |

Finally we consider two specisl cases of (8.14a), For

AT = af e 33¥ we £ind with the help of (6.34a), that

vvéagé = %—-[D‘?é, [r (vé),aF]:l =R{@") = 52 (aF) . (8 .15&1)
and for AP = afApC , (6.35v) gives

U, [2FArS] = m@Hm® + aFarS) < 2r(EFABE) )

= s2(a¥AbE) .
Liore generallyafrom (6.56)5 it is seen that

F
Nt
vav

= 5°(aF) for a1l A¥ey¥ . ' ¢ e
5 :
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9,  Related Structures

Let X, be a regular integreble P-structure and XP’

a resular integrable P’-structure, where P and P’ ave the
projectiorn operators of the finite geomebtric subalgebras ﬁ&)
and °(1°}.

a} Basic Definitions and Properties

we shall say that the structures X, and Kp. are

s-related if the following two conditions are satisfied:

i) & 18-a (P)P)-invegrable outermorphism which relates
(1) ana B(1°). (Recall definitions (5.21)
and (4.17) ) |
(9.1)

ii) _?{P[a; F]_ = Xp* [fga);_ ¥| for each a_E_}’:i'_‘ and . F ef,

We begin our study of f-related structures by establish-
ing conventions that will be used., For each meltivector A €
¥ , by the related mmltivector to A we shall alvays mean
the unigue A°€2J”" which satisfies - Sy
A woefE) , | (9.2) -
end the use of primes will always implty this relatedness,un~ .
lesa otherwvige specified. -
Let GEP;JS? . Then from (9.131) we can write

X by e za, =0, = X, [2"; ¢] , (9.32)
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and for intrinsic (P;P)-derivations

?P[a; G] = P’e,P =G, = G0 = PO P= ii,.[a"; G]'. b)
jote that writing Ga or Ga‘ means that devivationg are
being taken with respect to XP or- ‘,J{:.,?a s, and represenbsa
Wehange of varishles ™ formala in this langueage,., The rela—
tionship between the End—derivations Gy, end Goe . is

» ]
slightly more conplicabed., By taking b-derivations of the
identities (9.32,b) we get, using (5.12¢c) end [9.3),

= 1 = o -

Cab = [Cr@p = Galp * X (9.42)

and

Cap =% [Gf{aibP o ga’,?:;' ¥ Gf‘g_(a). ' b

for the respective extrinaic and initrinsic 2nd~derivations.

Applying (9.3) and (9.4} to the case vhen G = fF , gives

E R fé’F + 1F, ' (9.52)
and.

.Eﬂ;ja’ = L7+ IF, . b)
by using (5.12¢) and (9.1 ii), and slso

[fF.ja',b‘ = [ﬂ]a,h - [fF}fb(a)_
and

Eﬁja',b’ - Em?}a.,h - [fF]fb(a) ¥
From these formilas we caleulate, by again using (5.12c) and
(9.2), that

[fF._}a:b' u Bghyed w Laely & Tyoly & Hap ﬁﬁf_’ii‘b(a) B
and

. ) (9.6)

?F]&:‘b' = f&:.{)’F e faﬁl‘h + fb'F& + fFa’b = IE b)

1, (@)
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Qf course by £~1 o mean the inverse of the -outermorphism £,

Iiore exactly, £~1 “peans the unigue outermorphism in P‘ﬁr’

which satisfTies

£577 = p* ena £z p . (9.7a)

By taking derivations of (9.7a) wo getb

o =1 - -1 -1 T
..I.b-*f F ff-b &= Pba: and fb T+ ¥ fh-v = Pb . b)
which imply that
-t » = -] o] a : - &
£8,°(2") =<2 -(2) and £ 'f.f)=-£7(a") . c)

Identity (9.7¢) can bs used to slightly impiove the form of
the last terms in (9.6a,b).  This last identity alsoc shows
that 7 is (#,7")-integrable whenever £ is (P;P)-integrable,
as might be expecied. :
FPor the remainder of this seetion we shall rastri&t our
atténtion to learning prcperties of intrinsic dafivatians of
f=-related structures. '
By applying (7.11) %o (9.4b) with G = £P , end using
(6.22) and the integrability condition (9.1a) of f , we Zind
‘that | |
FFT,5(0) = B9, ) = 2[E,, o - By, f0)
' -y 4 (Q.Ba)
::-é-Ei@'E—),fF(GH--é— fF([E (vé),c])

vhere v5 & £(vs) . TFor the case when F =P , and € = ce

(9.8a) simplifies to the importatt sxpression

P/

_‘ ':"‘?"'—! -, ""_—o l:{ =' t'l“—-‘.."r
£y20) =3 [fv’ vi®) fvg’v1.cﬂ R (v)-c f[‘{[ve)c{' b)

which relates the curvature of the struchture 'Xig to the cur-

vature of the structure ?KP through the map f . By using
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the identity (6.34a), and the basic relationships (4‘103)
and {4.17b) , we further find that

v;é. fvé(g) = RY(¢) - f[ﬂ(c)j . _ (9.9)

which relates the Ricei curvatures of the structures X3 agd
Xp through the map £ . In the noxt chepter ve shall use
(9.8b) and (9.9) in characterizing projectively and conformal-
1y related structures.

Finelly we give saveral ecuivalent waye of wribting the

integrability conditicn (9.1&) of £ , They are

£, +(b) = fyo(a) for all abed’ (9.10a)

£ ‘(B)"“" f '{3)!;:(?";33') for 24B E 3, b)
and '

{\7 oA }/‘»,f (B = )I'+'i f (A Lv ,.BJ ¢)

for =il Ar,Bigjb « These ccnﬁitions should be comparei with
the integrability conditions (5.208) and (5,7) of P , and

can be estdblished in exactly the same way.

b) Auxiliary Functions

Hany propertics of f-related structures are best studied

in terms of auxiliary funciions defined by the relation

¢*() =L gpert,- By = 2[0B)] . (9+11)

where u is a normalizing facior chosen for coﬁvenience. The
function ¢”(B) is the structural divergence of T , and
$(B) iz its inverse image.

By applying the decompogition formila




f?I = [fP}?o == f?II_’ + va »

we find, with the help of (4.10a) and (4.17b), that

[}

Vo 2o (B) = V-2 .P(B) + ?;a-f?v(B)

)

vi--g.[P@] + £ls(s)]
which implies that

¢*(8) = O [2(8)] + £f5(a)] =2 _[c_i)(B)] for BESY (9.12a)

and

$*(B) = £[5(B)] = £ [O(B]] when P(B) =0 . Byl

Thus the aunxiliaery funétions ars essenbially new q@ntities
only when evaluated at tangent.m‘ltivactors BeY 3 and
henceforth we shall restrict the domain of them to U ., On
the other hand, the range of (% lies in U” (because of
(5.25&)), whereas.- the range of ¢ iies in XU ,

The most importeat properties of the auxiliary functions
are -
zor ¢° , and

Dby AB) = QB )AB + (1T 2 AGG) b)

for @ « These properties should be compared with the sim-:i,"lar
vroperty (6.141:;) of the shape operator; ~and they can be estab-
lished in the same way, but this time using the integrability
conditicn (9.10c) of the outermorphism £ .,

As en important application of {(g,13a), let A,=act ﬁ’}d
and B = I in it, We then find that

bCa)2(1) = aAP(D) |,

Q‘P'(A?J’\B) . ¢" (Ar) Az (B) +(-1 )'r f[AT) /\qD‘(B) (9.133,} .. 5




or aquivalently, by using (1.19a), (9.11) and (5.124),

O = ' AG (D) E )" =L &% g 20 (1) f(xf)
. . (9. 14a)
= Fr oV fn k@] = [nlael]e
where Jf _is the gensralizZed Jacobian of £ givenlin (4.15&)

For {(a) w2 have

661 = o, falsgy = Baleely 9

where in this case"the derivation is being taken with respect
to X‘? [
Hore generally, for each A € U
L 1 {- - | oi? » 2 .
(b (.&) nrav?a [}'nla.fﬂ?’}"& = [Vvd (D(V}}.A (9.15&}

and

b1) = o fals s = [y b0l o

These properties are established in the steps below:

GH(a) = F Vor 2 (8) = Virfe s (WA e

b (Vs -4 252 (7Y A [(V;;A V) :A’]
[v;, q;‘(v)}m’ = f{[vv fb(v)_] :A}

The successive sbteps above are justified by (9.11), (S.100),
( 1.18a) and (1.19a), (‘9.10a (#.108) and (4.17b), respec-
tively. Tae relationships (9.1;) are important consequences
of the integrability of £ .

I% is usually expedient to work &as much as possible im
torms of the euxiliary function (D(B) because both ith do-
main and range lie in ¥ . As a consequénce of this, (p(B)
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gsatisfies several additional nice properties which can not be

so easily stated for (I)' (B) . They are

(!){a:B] = ai ¢(B} for a,B € I (9:16::1)
and |

$3(B) =0 for Bey, b)
eand can be ecasily esteblished using (9,13b) and the Principle
of mmlitivector decomposition 61.13).

¢) Derivations of Auxiliary Funchions

Ve wish first to show the propertles

boe(b) = Pr-(a) for all a,b ey’ | (9+172)

and

Dy(b) = Gp(a) for al2 abed’ - b)

These properiies are easily established by using (9.14) and
the regularity of the structures. Thus for (9.170b),

 bu@ = frlg s = Br e = Pal®)

and (9,1?3) can bs esteblished similarly. Noke that

Goe(b) = P-(d) end da(b) & () (9.18)
ie., it is immeterial wphether intrinsic or extrinsic deriva~
4ions are taken, Actually, we have already established (9.17)
for intrinsic derivations in (8.14) with F(V) = v, In 17,] and
Af = (V) = 1n]3,] '

More generally, using (9.15) and (A.2b), we find that

%—V;;¢—(vr) = Vi Ofy) and - erq:x[vr)z Vod@, @9}

from which it follows, using (9.’1?) , that
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";*"' V;’z_’\ V{,; P (v,) = V;§¢;é(v‘i} =0 (9.20a)
and '

a .

= Y !\er (‘bv(vr) = Vvé—"pvﬁ(vﬂ) el # b)

d) Brackets of f-Related Fields

Iet FE cf-g, and F¢ cf’.;p ‘be P~ and P- forms respec—

tively, and suppose their respective P~ and P’~fields are

given by
F F’ v bt
A" = VF(V) and & = V¥ (v") .

Wo shall say that the fields AY and AY  are f-related if
AT = 2y . , (9.21)

Taking & v ~derivation of (9.21) gives, using (9..55.),
2l =2 (aF) 4 2(a]) , (9.222)
from waich it follows, using (4.10a) and (4,17b), and (9.11),
that |

V;;'AE; = £ (VV.AE;') 'i'/,‘{q}‘(AF) . " b)

The familiar transformaticn Tforomla

V'-a?‘ « Ga® & ¥ ln|.]'f] c)

for the divergence of a vector fisld is a special cmse of h) .

To finish this section let AE and AE‘, and BF end
BF', be fw-related fields. By an argument almost identical to
the argument (8.9a) showing that the Lie Bracket preserves

P-fields, we now show that
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E° P B gF
[4E,57 1. = f(LA ,B _}P) , | (9.23)
ol 3y ie., the Lie brackets of f-related fields are themselves

f-related, .Thus with the help of (9.22a),
_:' [ 5% = (853 Vi) AeEe - aBA(Vye 8™
o E A @) s o (B e ]
- £ EW[Vpe 5™ ] - T AwasT)]
-2 (L) - |

Note that we are usipg the general integrability condition

o~

Ef@,_),f(gj?,g (a%: VLs)AL - (B) = £ s (A)N[V202B]
. (0.24)

£0 for all A,Be X

~ i of £ , which is a conseguence of (9.10c);_ and is snalogous

%o the condition (B.Bb) of P , The general relationship

1{9:23) was first established in [25]. _
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10, Projective and Conformel Structures
Many of the computations in this chapter involve sinple

formuias for differentiation which can be found in appendix A,
(10.1a)

a) Projective Structures

[ ]

Two f=related gecmebtric stmctﬁres ere said to be
a” = £)

projective structures if for each a e o’
¢ where
b) :

In sohudying projective strucliures it is convenient to choose
|

b)

(. 2 2
. R (a)Aa
the normalization factor of (9.11) to be =ns+1 whore n
dim (,961) . Thus for all A £ Pa)
£ .:—.-1—- o w £ Ay
¢ (8) = n+1 vv’ fv’{A) =Th) .
Teking the divergence of (10.1a) by V_. , end simplify=
. (10.2a)
¢, , and

ing; gives
Yurther differentisting this new expression by

-(a) = 2 Pla) a* = 2f [dla)a]

c)

“a
;
using (9.102}), gives
foe)=2[06)as Q) cj ,
vhich 1s a special case of the more general relabionship
- :
)=z 0@, +a gl ) -

This last relationship can be esbablisihed by induction on r=1,

L= f
Tar Gy
The relationship (10.1&) is trivially eguivalent to each of '

1
the relationships in (10.2).
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Taking now a b”-derivation of (10.2b) gives, with the
help of (9.5b) and (10.2b),

fa:b;(c) = fb,[¢(b) a + cj>{a) % + f[@b(c)a' _,,q:b(a):% (10.3)
= 2fly(0) +61) pla + 24(@)00) b + [P,(0) + fraxlo}

from which it follows, using (9.1‘?b) and {7.11) , that
Zs @) = Fffr oo @) = By oa(0)] = [ra Wyt (ra0)] (0.50)

where Y(v,c} = q)v[c} - (j)[v} ¢(c) o Taking the cuter prod.uct
of both sides of (10.4a) with ve gives the simpler but

equivaient expression,
fvé(c)/\vé- = 0 o ' _ b)

which can, in turr, by (9.8b), be equivalently written as

[R' (v‘é).cj/\v‘é - 1“{—‘6’. (vjé).cji\vé—g sl | c)

(Wote that for curvatuze, £[r (vé)]al R (v5) o)
- The guantity
wp = [Rapie]Avy | (10.5)
is classicaliy ¥nown as the projective Weyl tensor; and
(10.4%¢c) shows that it"s <form is preserved under f , for pro-
jectively related structures. A more resognizable form of

(10. 4c) can be obbtained by taking the simplicial divergence
of both sides of it with ‘Tv»_ « Doing this, we find, w:}_‘th
>4

S

the help of (.7), (4.10a) and (4.1%), that .

o _» ' o _#, 41
Rege - gy vaEE)= TR Epl0 - 5
Although (10.6) is fully equivalent %o (10.50,c), Go0.4b,c)

should be recognized as being more fundamental; 1t being

1

vsR()| . (10.6)




=
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trivial, for exampls, that wP =0 for =2 (‘oacause there

are only degenerale >~vectors in 2-&111311310115).

b) Conformal Stmct{xre ]

1o f=related geometric structurss are said to be

conformal structures if for esch ac’ ,

| f,o(@)Aa” = a%a” & AV " (10.72)
where I A
O (8) =2 Vyertye (8) ,—.-@:i/-ﬁ [¢a)] - b)

and

th

VO = Ve dt(v) | e
Note that in b) the normelizing Factor of the auxiliary func-
tion has been specified to be n= ain(b'). Comparing this
defizition with (10.1a) shows immediabely that conformel struc-
tures are projective only when V°{° =0 , as is well-known,
For a vgtanderd® statement and px_-oof of thi_s faet ses [6; 117:].

We now carz*:;r out for conformal structures the anaiogou_s
but more involved calculations that we did for projsctive

structures. Taking the divergence of (10.7a) with V5 sives

fe(a) f[a baja - a° V@j = f[(P{a)a + a-(?f?/\a)]

(10.8a)

£ ’f& I a] = a’v'¢p a’

Purther differentisting by o'y . gives, using (9.10a),
o) = 2[d@ra + ar(vpAe)] =L :[’[;:V{}J a+avd c] b)

The relatiomship {10,7a) is trivially equivalent to each of

the relationships in (10.8). Nobte the geometric significance
of the last equality in (10.8a): I% shows thet the a~derivation
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of a conformal map f , evaluated at the vector a , is the
reflection of the vector a’ through the vector V¢ .

Gur purpose now is to calculate vhat is classically known
as the conformal Weyl tensor. Taking & biderivation of (10.8b)

gives, using (9.5b), .
_Ea;h‘{c} - fho‘[@(c)a % a-(‘V¢Acﬂ + ffi:fi)b(c)a + a-(Vfbbf\c)] 40.9a)
from vhich we Ffurther c&lcul-s;ta,‘by again ugirg (10.8b), that
Ea:b.@)Aa'Ah' = f[ﬁfﬁb{a) + fi)(a)@ﬂs)_] ¢ .b)
- {g.cwb + (@(a)b-c £ é;bth(c))V(?]%hah‘tJ
Using this last expression, we find fhat
%,’I ,vg?"J - fvé,v;@ﬂ Avg

=2 {__[vv%,a)]/\vé }

'%‘vé_ (e)Avs == |
. (10.10a)

. where

5"_(‘9'»5) = {¢g{v) # CD(E)@&')] and & = V5eS . b)
-_T-Iow et - " _ . :
A= B (vh’INvg - f{&l(?é]-c]f\vé}
s | (10.11a)

. f— - = 1
B =R @MW ~2REN; | .
Then using the differentiation formulas (A.7), (a.8), (4.9),
and (4.10a), (4.175), we find that
- . .F! » L 7 ; n - ‘-
But equation (10.10a) together with (9.8b) shows also that
5 f{[vv\iitv,a‘}] Ava-} . (10.,12a)

end by a similar calculation to (10.11b) we find that
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Slren(@ogiloing -- Ea . b)

Equating (10.11b) to {(10.12b) gives the relationship
A-==B=0 ., (10.132)

Finally, hy definingz the quantity

1
Ug = [R("’é}"’ T o2 R("g"’ﬂf\"’g s _ b)
the relationship (10.13a2) takes the new form
Wg = [R5y -~ 53 Bl50 )]!\vé c)

]

fgﬁi(vé)-o --;ﬁ_-é 3(72—-0)] A vé} = f(wc.)
which expresses the conformal Weyl relationghip beiween con~
formally related structures,., The quantity 'b(}c is classically
¥nown as the conformal Weyl tensor, ;

A more recognizeble, but egquivalent form of the conformal
Weyl tensor can ha obtained by takiﬁg, the simplicial divergazice

of (10,13b) with Vv_ . Doing this we Lind thet
FEi : o

, - | S L
e Yoy = ROz)-0 =53 [VaRE) + R(v500)]

p (10.14)
* =Ty E=2) R vsec .
Although (10,14) ard (10.12b) are fully equivalent, (10.13b)
is more fundamental, As an indication of this, it is trivial
o argue that (10.15‘&;) is idertically zexo for n=3 ; this

is not the case with (10.14),
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A, Differentiztion Foromlas

Iet %= 2(I,) be a finite subalgebra of 9. 1
this appendix we consider differentietion formulas involwving

the finite gradient operators of 27 .
a) Basic Identities

Let Asefbﬁ where o<sén , end conaider the combina-

torial identity
(nA - [s)(n-s)A M {s)(n-s B o i
r) g /i s \x-1)"s

v (2) (5% + G078

where (k) means the combination of 1 , k at a time for k£l

(1.10)

and (13&) = 0 for kvl . Coansider now the algebraic identiby

ervrag = er VpN\ag + vvr {Vobg Vgar—z * *° _
b))’
® er <v:|:‘&s> le=ri+2 ® er vrg‘ﬁ‘s

which is an appiicaticn of (1.21). The identities a) and b)
above are termyise equivalent, as ecan be verified by an indue~ |
tive avrgument on r and s , Preofs of special coses of this
can be found in [25].

We now list several immediate conseguences of the above

equivalence for easy reference;




108

Ypr=(2) . | | (2.2a)

(f')‘l*s for r<s
Uy Vb, = =AYy T, b)

¥ [;:z)Ag for 128 i

n-s
( for tssén
er VeMg = ” As’\qu Ve )
0 for =ms+son wo
Using (A.28,b) and the Leibnitz product ruls (3.18b),
it is easy to further calculabe

y BY. ar. ' & :
qu vl “[Er)'] I;r\k for Il | - (8e32)
:Z"-k: ' ‘Wr.r '
erlvr[' = %) F.F | b)
; r
£
v
er | = “‘If‘!;“é - c)
e i

b) Signatures of a Iultivector

We now consider a special class of identities which can

also be directly esteblished from (A.1) with the help of the
rules (1.,20) for commbing multivectors, Define the

kPP gienature of a miltivector A €2 to be |
slg, ()= Vy ATV . - (ea)
X
Since sig, @+B }.s sig, (A) + sigy B), it is sufficient to

determine the signatureé of horogenecous mulbivectors, These
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are given recursively by

sig,(hy) = (1) (a-2z)a, (h.58)
sig, (b,) =5 [@-2v)% - n] &, b)

and
sig, (.ﬂr) a—%— {(«-1)1‘ (n-ﬁr]ai;b_1 (4, —(n—-k-i»Z)sigk_a{Ar)] c)

for k>2 .,

it

Tables of Signatures

‘Iat A= da+ a4+ Ag * A3.+ AQ -

n=2 & a A, n=3 4 a A, Aﬁ
sigo 1 ! 1 sigo 1 1 1. 1
sig, 2 0 =2 _ sig; 3 =1 =1 3
sig2 1 =1 1 sig2 3 -1 =1 3
' sig3 17 1 1 1

n=4%  J a AE ‘A3 A@ 5

aigo 4 1 1 1 4

sig1 4 =2 0 2° =4

sig.a & 0 -2 D &

sig; 4 2 0 =2 -4

sigq 1 -1 -1 1

¢) Completely Symmetric Bivector liaps
We now sumnmarize the differential identities used in
chapter 10, Iet R(vé} be a linear, completely symmetric,

bivector—valued zep. Recall that this just nsans B(vé)
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satisfies the Bianchi condition 54.4). Just as-in sectien Gd)j
let | .

Bfrp) =2 G RUg)= VB g AY3)
and '
R= Vve-R(va) =2 VsREs)

Then Izﬁﬁg) will satisfy the following differentiasl idenfitiss:
Vé‘[@ (Vé“’]”\véa = 28 Vn(we -~ S vyRE) . (A7)

1 v
3T RO = T[T BE AT, = Yy BTz (880

[Vé‘vv R(Vﬂoc = vé-R{c} + R(vévo) - b)
Vé‘%(véf.q);\vé] = i"ig_-_‘vg(v-éo_c) +-,,,1é1_[v§.3(3}_ vé‘“ EJ.(A'.Q-)

Tﬁese identities are consequences of (4.2), (843}, the Leibnitz
product rule (5.18), and the Bianchi ideﬂﬁﬁes (6.26Y,

It is im@ortént to note thatb differenfiazion in the above
Iidentities is teken with respect to the siﬁplicial variable Ve
For comparison we give the corresponding formmlas %o (A.?) end
(4.9} when differentiation is instead taken with respect to

the bivector variable vg-. ‘Thus

and ;

2 _ :
Vv;{ﬁi(vé")”g}# .9_"%9_14-_4 n(vg. c) + ViR(c)~ Vze B (4.11)

More insisht can be gained into these two different
kinds of differentiation by coasidering the fellowing two

cagier calculations:

'V?aﬂ(vajovz e 1_(1?2) + B(V,) = 2 R(V,) , (A.12a)

e
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whereas

a5 4 i
?vé Rfvylvs = V, AV, R("qm’z)’_(“"q*’\"a}

=

=3 %AV, Vo [To R (vyAv,)] = > Va“E’z'R(V'l’\"eﬂ

. b)

R(viAT,) + 5 Vah [rp R (7407, }]

The celculation in a} only mekes use of the fact that R(V,)
is symmetric (ie., R(V,)= RT(?Q)), vhereas the calculation in
b) makes full use of the Bianchi condition in the last step.

A simple but important consequence of (A.12b) is thab

R(vé)-va—, = 0 Zfor all simpla V5 € ) _ _
ig equivalent to _ % (A.13)
R(vz)# 0 for all simple v5 €. .

This result is eguivalent to proposition & of [26; II 413-1?]‘,
and & cloger exanmination further shows that our Bianchi
condition (4.4) for _3[?2] is egquivalent to the hypothesis
of proposition 7 of the same reference,

Finally wie note that &1l the identities of this section

can beo eagily generalized to completely symmetric linear maps

of an r~vector, or an r-simplicizl variable.
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B, Manifolds

In this appendix we give definitions which suggest how
the usual notion of a differentiable menifold is related to
the notion of a geomeiric structure, Ve coaclude with a brief

discussion cf integration on a manifold.
a) Definition of a Hanifold

et I be a connsched subset of 91 « Yectors x e¢ll

will be called poinks. JTet =x_ be & point of T . By & gurve

(o]

on M et x we shall mean a continuous mapping T () with
the propertiss

i) r i ~€<t<Ef —> MU ,and r()=x

o »

. B.1
ii) r(o) “3"3"% teo ©Xists. (58

The vector ¥_ = F(o) will be said to be the yelocity of the
curve r ab x_ .

o
et Y= D(I) be a finite subalgebra of S, We will

say that }:‘J is tangent to M a2t x  provided

i) For each a 55@1 there is & curve T on M at xo:with
velocity r’o =8 4

(B.a)

ii) gonversely, if r is a curve on M at x_ ,

then *_ €% .

Now let }(P be a regular integrable P-structure of &

finite subalgebra 37 which is tangent to M at x, . The
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structure X, will be said to f£it M_at x, if there is a

P
neighborhood 1\70 (with respect $o0 the relative topology from

Q) of x, in N, end a transformation of  with the fol-
lowing properties:

£r

) J,: L — o (B.3)
whare GCI-I is the set of &all uK—*&r:.ﬂ_ulacl continuounn mappings
o .
with dopain N, « For Pef , wo will write F_= J [F|(x)
€ ‘f“N for the valus of the transformation ‘Qo at F . HNote
0

that for xe Nc; " OFXEOE -
) & = LFlE) =7 . sl

ie,, thoe value of oFx at x=x, 1is | F .

11i) %?[oFr];c:-:o o ‘X:P[i’o‘ F] =%‘E &o[y]%{t)} =0 (B.Z:)

for each curve x(t) ab X, e The transformation ‘;00 will

ba called an intesrating btransforpation of the structure ?(P Te

Suppose now that we are given a second Sransformabion

L

Jor: f — qﬁi‘\x“; s vhere I

a sgecond point x;e 1 . We shall say that the transformations

ig the neighborhood of a second

&0 and V_Q;- are consistent if whenever

’

_ F_= ,+F, for some xeN NN, _ .
then - ‘ (B.4)

* -

oFx = o*Fy forall xel, Ns,

where of course F_ = Jo[f‘] (z) , amd  Fl. = Jo- [F'](x'].
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Finelly by a manifold JYlwith structure X we shall mean
a triple i (LI, B t_D) + Where

i) I is a connected point set in ar

1i) For each x ¢H , Xf,) = 'XP where lXP is
a reguler integrable Pe-structure which fits I at the

point x with the integrating trensformaticn

‘Bo =0 (xo) % (B.s)

iii} The integrating transformations :90 = <G(xo)

are consistent in overlapping neighborhoods for all X € ¥ .

b) Forms and Fields on & Manifold

Let = (EJ,'X, J)' be a manifold., By a gtructural form
on /N we mean a function '

JEsm— g o (B.62)
which we will denote by Fx s With the propexrty that for sach
x;!E ¥ , there is an X, € M and & neighborhood I&D containing

both z, and x, such thet for some F° ¢ [

1
B= o= S forau xen, . e

Of course ‘-_00 is the integrating trapsformation of the mani-

fold at Xy o It .?x satisfies the additional properiy that
F PR P forall zeX ' c)

where Px is the finits projection coperatcr ontc the tangent
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algebra XJ_ to the manifold at the point x , then P will

be called & structural P —fonm.

As might be expected, by the structural field of a strue-

fural form Fz we mean the mnltivectoruvalued function define

ed on M by
Azys Vo5 (z) . o (B.72)

If F_ is a structural P ~form, then A¥(x) will satisfy the

additional properiy that
A(x)::VP‘(Z)- v Fx r[a (x], : b)

where V = P&(Z] , and will be called a structural P -field.

¢) Integraticn on Hanifolds

_ Let JNU be an oriented n-manifold in §31 ,rand let ﬂ%;_"
he a~region of xfh.with a well deflned buundary oR . Iet

A(kx) be a multl?ﬁctor f£ield defined in R Following 1135

5ﬂ?], we define the direcied Riecmann integral of A(x) over

® vy

S
SG.V A(x) = 50 ; AV_ .A.(xi) (B.8)

Aﬂ'—?ﬂ

R’ x5

where AV, ~ is the directed {n-vector) measure of voluwe of
i : .

the region: B at the point =z, .
One of the most important theorems aebout integrals of
multivector fields is the so-called fundemental theorem of

calculus, It is given by

7
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® SR
This theorem relates thse integral of thes (stmctural) gradient

Savx Y, Ax) = Sdsx.&[x) - ; (B.ga)

of a field over an n~yegion to the integral of the field over

~ the (11-1 )nbou.ndary. The special case of this theorem

dex' [Vx AAn—-‘l (xl’ = d‘sx"g‘n—’t &) b)
® R - |
vhen A, . (x) is an (n~1)-field, is equivalent to the Stokes

theorenm for-differentisl forms. For a discussion of the fun-
damental theorem of caleculus and other generel integration
formulas in the languegs of geometric algebra see [13_]. For
aﬁ account of the close parallsl beiween opeiations on differ-
ential forms and the correspoading algebraic opera‘tions on
fields, ses [25; 95]._

Suppose now that a sscond n-manifold ¥ in 94 is given
which is related pointwise %o JI\L by the map = £(x) .
Sippose Purbher st Ehe bangent map £, of £ at the point

& fx-relai;es the tangent algebras ﬂjx and fb;- of the
manifolds JN and /71U . Then we have the following basic
formula for trensforming int;egz-al's' on (R° to integrals on (R :

Savx.a &) = j av_ :f;x 4% 2=y | (B.10)
ml " @ . v
where J; is the generalized Jacobian (#.152) of the tangent
map f defined in chapter 4,

Ye will say that the trensformation %"= f(x) represents

a chaonse of coordinates with positive oriemtation in R if
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i) £ :8 —> R’ is one-to-one, onto and regular,

| (3.11)

ii) Ig = 3¢ >o > 0 foreach x ¢ .
x x

Iz £ satisfies (B.11), and AYx") is & psoudescalar-valued
field, then (B.10) is equivalent to the usual transformabtion
of coordinates formmla Rfor intezrals.

e A {x-') ard A(x) are pseudoscalar i‘_iezlds on ® and

(R~ respectively, and
tr.. . .
AR) = fin (= )J : (B.'lea.)
then (B,10) reduces %o

S av‘zu,a’ (') = S&?K-.&(x} b)

P

K R

which is equivalent %o the rule for Ppulling back® differen=

3

. tial forms,
Transformation formilas for integrals of the type

(B.10-12) were Tirst considered in [25].
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