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Depiction of the Universal Null Substrate (UNS)

“Da quel punto depende il cielo e tutta la natura.”
“From that point depend the heavens and all of nature.”

— Dante Alighieri, Paradiso XXVIII, 41–42

Abstract

Clifford Geometric Algebras Gp,q are traditionally studied in terms of their defining quadratic forms.
Here, we introduce a complementary Quadratic Space of Null Vectors (QSNV), where geometric algebras
emerge from a Universal Null Substrate (UNS). The resulting hybrid Grassmann-Clifford Geometric Algebra
is defined by a recursive orthogonalization process, offering powerful new tools for studying classical Lie
groups and their Lie algebras. At the core is a Zero Residue Factorization (ZRF), defining the geometric
stability of the algebra. This QSNV classification offers great computational advantages by replacing matrix
operations with an index arithmetic on null vectors. It is conjectured that the famous Valley of Stability
in nuclear physics closely mirrors the algebraic structure of the QSNV. An Appendix further speculates
that QSNV is a natural language to investigate that spacetime geometry is just a physical manifestation
of triangular inequalities of quantum information on emergent null cones, and considers its philosophical
precursors in Dante’s Divine Comedy.
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1 Introduction
The classification of Clifford geometric algebras has historically relied upon the rigid definition of metric signa-
tures (p, q), dictating the number of basis vectors squaring to +1 or −1 [11]. While this approach, solidified by
the work of Cartan, Bott, and others, successfully categorizes the periodicity of these algebras, it obscures the
computational elegance found in the underlying null geometry [15, 16].

This work proposes a shift in perspective. Rather than viewing the metric signature as a primary constraint,
specific geometric algebras arise from a Universal Null Substrate (UNS) defining a Quadratic Space of Null
Vectors (QSNV). In this framework, the fundamental objects are the null vectors themselves, arranged in
specific configurations (simplexes). The standard orthonormal bases of G1,n and Gn,1 are derived via a recursive
orthogonalization of these null simplexes.

By establishing the isomorphism between these null bases and the standard bases, we unlock a powerful
computational tool. The breakdown of high-dimensional algebras into Zero Residue factors reduces geometric
multiplications to simple arithmetic rules on a null substrate. This paper details the construction of Vr,s,k

spaces, provides an inductive proof of recursive orthogonalization, and catalogs the resulting geometric algebras
for dimensions p+ q ≤ 8. The defining properties of the classical Lie groups and their Lie algebras are greatly
simplified, taking advantage of the trivial multiplication rules of the emergent null vectors in Vr,s,k.

Particularly noteworthy is the striking similarity of the algebraic structure of QSNV to the structure of
nuclear decay in the famous Valley of Stability [17]. The QSNV and UNS framework provides a natural
algebraic language for the Holographic Principle and the Covariant Entropy Bound, and Discrete Max-Focusing
[2, 3]. The Holographic Principle has many famous historic precursors, such as in the Greek’s Famous Cave
Allegory, and Dante Alighieri’s Divine Comedy, Paradiso XXVIII.

2 Core Definitions
Definition 1. Standard Basis of a Geometric Algebra.

A geometric algebra over the real numbers R is generated by a Standard Orthonormal Basis of a quadratic
form:

Gp,q,k := R(e1, . . . , ep, f1, . . . , fq,n1, . . . ,nk), (1)

where all of the basis vectors ei, fj ,nh are anti-commutative, and

e2i = 1 = −f2j , and n2
h = 0. (2)

[13, 14]. When k = 0 in the standard basis, Gp,q is said to be indefinite, and when q = k = 0, the geometric
algebra Gp is said to be positive definite, or Euclidean. In the case that p = k = 0 the geometric algebra G0,q

is negative definite, or pseudo-Euclidean.

The most famous identity for the geometric product of vectors a,b ∈ G1
p,q,k is

ab := a · b+ a ∧ b =
1

2
(ab+ ba) +

1

2
(ab− ba), (3)

defining the symmetric inner product and the anti-symmetric wedge product of the vectors a and b. For a
comprehensive treatment of geometric algebra and calculus, see [9].

Definition 2. Null Vector: A null vector n is defined by two properties:

1. It possesses an oriented direction.

2. Since n2 = 0, it lacks a metric defined length.

Definition 3. Quadratic Null Vector Space Vr,s,k:
The Vr,s,k is an (r + s+ k)-dimensional vector space spanned by the union of three subsets of null vectors:

Vr,s,k := {c1, . . . , cr,w1, . . . ,ws,n1, . . . ,nk}R = V c
r ∪ V w

s ∪ V n
k .

Inner Product Rules

Using the Kronecker delta δij , inner products of null vectors define a non-orthogonal basis where every distinct
pair in the same subset share a constant inner product:

1. Positive-like c-vectors: ci · cj :=
1

2
(1− δij)
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2. Negative-like w-vectors: wi ·wj := −1

2
(1− δij)

3. Zero-like n-vectors: ni · nj := 0.

Definition 4. Quadratic Grassmann-Clifford Algebra G⊥
r,s,k

The 2r+s+k-dimensional Grassmann algebra G⊥
r,s,k, under the anti-commutative wedge product, is generated

by the QSVN basis null vectors Vr,s,k,
G⊥
r,s,k := G(Vr,s,k). (4)

We impose the additional rule that basis vectors from different signature sets anti-commute under the geometric
product. Because they are mutually orthogonal,

ci ·wj = ci · nj = wi · nj = 0,

so that
ci ∧wj = ciwj = −wjci = −wj ∧ ci, ci ∧ nj = cinj = −njci = −nj ∧ ci,

and ni ∧wj = niwj = −wjni = −wj ∧ ni. (5)

The quadratic Grassmann-Clifford algebra G⊥
r,s,k is a hybrid structure combining the formal Grassmann

antisymmetric wedge product with the independent symmetric structure that defines the quadratic form of a
Clifford geometric algebra.

Multiplication Tables

The following Tables identify the geometric algebras defined by each of the subspaces V c
r , V

w
s , V n

k of null vectors
in the Quadratic Grassmann-Clifford Algebra (QGA) G⊥

r,s,k. This is proved in Theorem 1 of the next Section.

Table 1: Multiplication Table for V c
r (c-basis)

ci cj cicj cjci

ci 0 cicj 0 ci

cj cjci 0 cj 0

cicj ci 0 cicj 0

cjci 0 cj 0 cjci

Table 2: Multiplication Table for V w
s (w-basis)

wi wj wiwj wjwi

wi 0 wiwj 0 −wi

wj wjwi 0 −wj 0

wiwj −wi 0 −wiwj 0

wjwi 0 −wj 0 −wjwi

Tables 1 and 2 demonstrate how multiplication of all multivectors in the geometric algebras G1,n and Gn,1,
is reduced to two simple rules of multiplication for distinct pairs of null vectors in the Quadratic Grassmann-
Clifford Algebras G(V c

r ),G(V w
s ), and in G(V n

k ) for n ≥ 1.

G1,n := Gc
n+1 = G(V c

n+1) and Gn,1 := Gw
n+1 = G(V w

n+1). (6)

Table 3 is the standard multiplication table for the multiplication for any two null vectors ni,nj in the 2k-
dimensional graded Grassmann algebra Gn

k . This Grassmann algebra also defines the degenerate geometric
algebra

G0,0,k := Gn
k = G(V n

k ). (7)

Examples are given in the next section.

3



Table 3: Multiplication Table for V n
k (n-basis)

ni nj ninj njni

ni 0 ninj 0 0

nj njni 0 0 0

ninj 0 0 0 0

njni 0 0 0 0

2.1 Recursive Orthogonalization Theorem

We introduce the partial sums (centroids) Ck :=
∑k

i=1 ci and Wk :=
∑k

i=1 wi.

Theorem 1. The Quadratic Grassmann Algebras G(V c
n+1), and G(V w

n+1) define the Standard Basis of the
geometric algebras G1,n and Gn,1 as follows:

Case 1) Construction of G1,n: The algebra G(V c
r ) generates the geometric algebra

G1,n := G(V c
n+1) = R(e1, f1, . . . , fn),

where e1 := c1 + c2, f1 := c1 − c2, and for 2 ≤ k ≤ n:

fk := αk

(
Ck − (k − 1)ck+1

)
, with αk :=

−
√
2√

k(k − 1)
. (8)

Case 2) Construction of Gn,1: The algebra G(V w
n+1) generates the geometric algebra

Gn,1 := G(V w
n+1) = R(f1, e1, . . . , en),

where f1 := w1 +w2, e1 := w1 −w2, and for 2 ≤ k ≤ n:

ek := αk

(
Wk − (k − 1)wk+1

)
, with αk defined as above. (9)

Proof. We prove Case 1 by induction on n. The proof for Case 2 follows identically by replacing c with w, but
redefining f1 and e1 appropriately in terms of w1 and w2.
Base Case (n = 1): Consider G1,1 = R(e1, f1) derived from {c1, c2}.

e21 = (c1 + c2)
2 = c21 + c1c2 + c2c1 + c22 = 0 + 2(c1 · c2) + 0 = 2(1/2) = 1.

f21 = (c1 − c2)
2 = −(c1c2 + c2c1) = −2(1/2) = −1.

e1 · f1 = (c1 + c2) · (c1 − c2) = c21 − c22 = 0.

Thus, {e1, f1} forms a standard orthonormal basis for G1,1.
Inductive Step: Assume that for k < n, the set {f2, . . . , fk} consists of mutually orthogonal vectors squaring
to −1, and that all are orthogonal to e1. We must show that fk+1 defined by (8) satisfies f2k+1 = −1 and is
orthogonal to the previous basis vectors.

First, we calculate the square of the unnormalized vector vk+1 = Ck+1 − kck+2. Note that Cm · Cm =
(
∑

ci)
2 =

∑
i ̸=j ci · cj = m(m− 1)(1/2). Also, Cm · cext = m(1/2).

Let m = k + 1. Then fm = αm(Cm − (m− 1)cm+1).

(Cm − (m− 1)cm+1)
2 = C2

m − 2(m− 1)(Cm · cm+1) + (m− 1)2c2m+1

=
m(m− 1)

2
− 2(m− 1)

m

2
+ 0

=
m(m− 1)

2
−m(m− 1) = −m(m− 1)

2
.

To normalize this to −1, we require a scalar αm such that α2
m[−m(m−1)

2 ] = −1.

α2
m =

2

m(m− 1)
=⇒ αm =

−
√
2√

m(m− 1)
.
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This matches the definition in the Theorem.
Finally, observe that by construction, fm lies in the subspace V c

m+1. Due to the symmetry of the simplex
basis where ci · cj = 1/2, the vector Cm − (m − 1)cm+1 represents the direction from the vertex cm+1 to the
centroid of the face defined by Cm. This direction is orthogonal to the subspace spanned by the differences of
the components of Cm, which contains all previous fj (j < m).

Thus, fn is orthogonal to all prior basis vectors and squares to −1, completing the induction.

Remark on Geometry: The construction in Case 1) corresponds to the standard Hyperbolic Plane def-
inition found in Artin [1] for k = 1. For k ≥ 2, the construction differs from standard Witt decompositions.
Since ci · cj = 1/2 for all i ̸= j, the basis vectors {c1, . . . , cn+1} form the vertices of a regular simplex em-
bedded in the null cone (or light cone) [12]. The recursive formula (8) represents a specialized Gram-Schmidt
orthogonalization exploiting this simplex symmetry.

Examples
The following Examples should help familiarize readers with notation being used, and newly introduced.

1. G1,1 = G(V c
2 ) = G(V w

2 ) = R(c1, c2) = R(w1,w2)

2. G2,2 = Gc
1,1 ⊕⊥ Gw

1,1 = R(c1, c2,w1,w2) ≡ G(V c
2 )⊕⊥ G(V c′

2 ) = R(c1, c2; c′1, c′2),
where

e1 = c1 + c2, f1 = c1 − c2, e2 = w1 −w2, f2 = w1 +w2. (10)

Alternatively, e2 and f2 can be defined by an orthogonal c′ basis {c′1, c′2},

e2 := c′1 + c′2, f2 := c′1 − c′2, (11)

where ci · c′j = 0 for i, j ∈ {1, 2}.

3. Gr,r = ⊕⊥rGc
2 := G(V c

2 )⊕⊥2 · · · ⊕⊥r G(V c′′..′

2 ), for r orthogonal copies of G(V c
2 ) as defined in Example 2.

3 Universal Null Substrate
In standard Clifford algebra classifications, the metric signature (p, q) is often viewed as a fundamental rigidity
of the space. In the QSNV framework, we invert this view. The fundamental objects are the null vectors,
themselves existing in an infinite “reservoir” of orthogonal potentialities:

U = {c1, c2, . . . } ∪ {c′1, c′2, . . . } ∪ {w1,w2, . . . } ∪ {n1,n2, . . . } ∪ . . . (12)

Any specific geometric algebra Gp,q is a finite selection of null vectors from the various positive-like, negative-
like and other orthogonal sets. The rules of interaction (the inner products) are unchanging constants. This
unchanging foundation emphasizes that the geometric properties are emergent from the combinatorial selection
of null vectors. In Section 7, it is shown that crucial Lie Algebra and Lie Group structures of all the Classical
Groups directly emerge from the universal substrate. Because of the complementary interplay between symmet-
ric and antisymmetric structures in G⊥(Vr,s,k), many exotic algebraic structures can emerge from the universal
null substrate.

As depicted in Figure 1, the substrate is not a rigid lattice but a reservoir of potentiality. The random
orientations of the null cones signify that before a metric signature is imposed, the null vectors exist in mutually
orthogonal subspaces with no preferred time or space direction until selected.
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Figure 1: Depiction of the Universal Null Substrate. Geometric algebras are constructed by selecting null vectors
from these locally independent null cones. The variety of sizes and orientations recognizes the independent
orthogonal subspaces available, existing in potentiality before a basis is chosen. The Substrate is not a rigid
lattice, but a reservoir of independent null forms.

We review the matrix representation of geometric algebras in the next section, emphasizing the relationship
between the new approach expounded here and the historic approach used over the last 150 years.

4 Coordinate Matrices of Geometric Numbers
All geometric algebras Gp,q are known to be Bott 8-periodic. Let [gij ]m,n be a real (m× n)-matrix. The basis
elements Mmn(r, s) of an (m× n)-matrix Mmn are specified by its mn basis elements:

Mmn(r, s) := [1rs]m,n = [δirδjs], where 1 ≤ r ≤ m, and 1 ≤ s ≤ n. (13)

All of the r(r − 1) basis elements Mrr(i, j) off of the main diagonal of a square r × r matrix have square 0.
However, the set of k = r(r−1)

2 upper triangular basis matrices Mrr(i, j) is not isomorphic to the Grassmann
algebra Gn

r = gen{n1, . . . ,nr}.

4.1 Coordinate matrices of Grassmann algebras
Grassmann algebras are isomorphic to subalgebras of matrix algebras of the appropriate rank and order. The
(2× 2)-matrices

[a] := [121]2 =

(
0 0
1 0

)
, and [b] := [112]2 = [a]T =

(
0 1
0 0

)
(14)

are a double matrix covering of the isomorphic 1-dimensional Grassmann algebra,

G0,0,1 = G1 := gen{a} = G1 := gen{b} ∼= gen{[a]} ∼= gen{[b]}. (15)

For the Grassmann algebra G2,

G0,0,2 = G2 := gen{a1,a2} = G2 := gen{b1,b2} ∼= gen{[a1], [a2]} ∼= gen{[b1], [b2]}. (16)

where

[a1] =

(
121
143

)
:=


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 , [a2] =

(
131
−142

)
:=


0 0 0 0
0 0 0 0
1 0 0 0
0 −1 0 0



[b1] = [a1]
T =

(
112
134

)
:=


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , [b2] = [a2]
T =

(
113
−124

)
:=


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 . (17)

For G3,
G0,0,3 = Ga

3 = Gb

3
∼= gen{[a1], [a2], [a3]} ∼= gen{[b1], [b2], [b3]}, (18)

and [bi] = [ai]
T , where the (23 × 23)-coordinate matrices are given by

[a1] =
(
121 143 165 187

)
[a2] =

(
131 −142 175 −186

)
and [a3] =

(
151 −162 −173 184

)
. (19)
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4.2 Coordinate matrices of geometric algebras Gr,r

A geometric algebra Gp,q with p+ q > 0 is said to be positive dominant or negative dominant if p > q, or p < q,
respectively. In the case that p = q, the geometric algebra Gr,r is said to have neutral signature. The double
covering of the Grassmann algebras G1,G2,G3 by the matrix algebras {gen{[ak]}, gen{[bk]}} for k ∈ {1, 2, 3},
are used to find sets of isomorphic coordinate matrix algebras of the geometric algebras G1,1,G2,2,G3,3. Letting
e := a + b and f := a − b, it is easy to show that e2 = 1 = −f2 and ef = −fe. Taken with the coordinate
matrices [a] and [b] given in (14),

[G1,1] ∼= G1,1 = gen{e, f} = gen{a,b}. (20)

Similarly, letting ei := ai + bi and fi := ai − bi, then e2i = 1 = −f2i and eifi = −fiei, and

Gr,r := R(e1, . . . , er, f1, . . . fr) = Gr ⊕⊥ Gr = G⊥r

1,1 (21)

where Gr := R(a1, . . . ,ar) and Gr := R(b1, . . . ,br). The Grassmann algebras Gr and Gr, defined by the null
vector bases {ai} and {bj}, are said to be globally dual because

ai · bj =
1

2
(aibj + bjai) =

1

2
δij , (22)

[16]. Taken together (14), (17), and (19), define the geometric algebras (21) and the isomorphic coordinate
matrix algebras [Gr,r] ∼= Gr,r for r = 1, 2, 3. Compare this with the construction given in (6), (10) and (11).

4.3 Building blocks of geometric algebras
In contrast to definition (22), the geometric algebras G1,n and Gn,1 defined in (15), are said to be locally dual
because their null vector bases satisfy

ci · cj =
1

2
(1− δij) or wi ·wj = −1

2
(1− δij), (23)

respectively [16]. The basic building blocks of the geometric algebras are G1,1, G1,2 and G2,1, generated by the
locally dual null vectors a ≡ a1 = c1, b ≡ b1 = c2, and c3, and w1,w2,w3 in the case of G2,1. The geometric
algebra G1,2 and its coordinate matrix [G1,2] is given below.

G1,2 := G(V c
3 ) = R(c1, c2, c3) ∼= [G3,0].

where
[G1,2] = gen{

(
0 0
1 0

)
,

(
0 1
0 0

)
,

(
j 1
1 −j

)
} (24)

for j :=
√
−1.

For G2,1 := G(V w
3 ),

G2,1 := R(e1, e2, f1) = span{u+, f1, f1e2, e2} ∪ span{u−, e1, f1e1, e1e2

= u+R(e1, e2, f1) + u−R(e1, e2, f1), (25)

where the mutually annihilating idempotents u± := 1
2 (1±e1e2f1) play the role of the different identity elements

in the two 4-dimensional projective subspaces.

5 Zero Residue Factorization
Positive and negative dominant geometric algebras can be factored into the products of geometric algebras of
the same kind. If Gp,q is negative dominant, with p ≤ q, Zero Residue Factorization (ZRF) of Gp,q occurs in two
cases: 1) Negative dominance ZRF when p ≤ q, and 2) Positive dominance ZRF when p ≥ q. For the negative
dominant case p ≤ q, we seek integers k, l ≥ 0 such that the orthogonal direct sum Gp,q := G∧k

1,1 ⊕⊥ G∧l
1,2 is

metric preserving, giving the system of linear equations(
p = k + l
q = k + 2l

)
.

Solving for k and l gives l = q− p ≥ 0 and k = 2p− q ≥ 0. The zero residue, metric-preserving c-decomposition
is only possible under the condition that both k and l are non-negative:

p ≤ q ≤ 2p

7



Table 4: Zero-Residue: Negative Dominance (p ≤ q ≤ 2p, p+ q < 8)

Gp,q p+ q k = 2p− q l = q − p Lounesto (2001) Notation

G1,1 2 1 0 R(2)
G1,2 3 0 1 C(2)
G2,2 4 2 0 R(4)
G2,3 5 1 1 C(4)
G2,4 6 0 2 H(4)
G3,3 6 3 0 R(8)
G3,4 7 2 1 C(8)

Classification Table 4: Negative Dominance (p ≤ q ≤ 2p)
These algebras are perfectly tiled by the Hyperbolic Factor (G1,1

∼= R(2)) and the Complexifier Factor (G1,2
∼=

C(2)).

Classification Table 5: Positive Dominance (q ≤ p ≤ 2q)
By swapping the G1,2 factor for G2,1, we obtain zero-residue ∧-decomposition when the positive signature is
dominant. We seek integers k, l ≥ 0 such that Gp,q = G⊥k

1,1 ⊕⊥ G⊥l

2,1.

p = k(1) + l(2) =⇒ p = k + 2l

q = k(1) + l(1) =⇒ q = k + l

Solving for k and l yields the required factors:

l = p− q

k = 2q − p

The zero-residue, metric-preserving decomposition is only possible under the condition:

q ≤ p ≤ 2q

Table 5: Zero-Residue: Positive Dominance (q ≤ p ≤ 2q, p+ q < 8)

Gp,q p+ q k = 2q − p l = p− q Lounesto (2001) Notation

G1,1 2 1 0 R(2)
G2,1 3 0 1 2R(2) = R(2)⊕ R(2)
G2,2 4 2 0 R(4)
G3,2 5 1 1 R(4)⊕ R(4)
G4,2 6 0 2 R(8)
G3,3 6 3 0 R(8)
G4,3 7 2 1 R(8)⊕ R(8)

5.1 The Anti-Zero Residue Boundary Cases
An Anti-Zero Residue algebra is one that cannot be decomposed entirely into null simplexes G1,1, G1,2, or
G2,1. These algebras, falling outside the zero-residue bands (q > 2p or p > 2q), possess an irreducible Euclidean
Core (isomorphic to G2,0 or G0,2) or a Quaternion Core (isomorphic to H := G0,3) that prevents the total
collapse into a null substrate.

The primary boundary cases for low dimensions are the Spacetime algebra G1,3 and the Majorana algebra
G3,1. However, as dimension increases, a specific “Anti-Zero" boundary layer emerges, including G1,4, G1,5, and
G2,5, as detailed in Tables 6 and 7.
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Table 6: Anti-Zero Residue: Negative Dominance Boundary (q > 2p)

Gp,q p+ q Isomorphism (Lounesto p.217)

G1,3 4 H(2) (Spacetime Algebra)
G1,4 5 2H(2) = H(2)⊕H(2)
G1,5 6 H(4)
G1,6 7 C(8)
G2,5 7 2H(4) = H(4)⊕H(4)

Table 7: Anti-Zero Residue: Positive Dominance Boundary (p > 2q)

Gp,q p+ q Isomorphism (Lounesto p.217)

G3,1 4 R(4) (Majorana Algebra)
G4,1 5 C(4)
G5,1 6 H(4)
G6,1 7 C(8)
G5,2 7 C(8)

6 Analysis of Stability
The QSNV classification scheme, based on the Zero Residue condition, defines a bounded region of maximal
algebraic stability within the collection of Gp,q algebras. This structural organization presents a compelling
analogy to the well-known Nuclear Valley of Stability in nuclear physics which classifies atomic nuclei based
on the ratio of protons and neutrons [17, 18]. The three regimes of stability common to both systems are
summarized in Table 8.
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Figure 2: The Geometric Algebra Valley of Stability. The chart plots the metric signature components p
versus q. The shaded regions represent the “Zero Residue" algebras, which factor completely into null simplexes
(G1,1,G1,2,G2,1). The red circles indicate "Anti-Zero" boundary cases, such as Spacetime Algebra (G1,3), which
require an irreducible Euclidean or Quaternionic core.
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shaded regions mirror the stable isotopes of the nuclear valley, while algebras falling outside these bounds
(Anti-Zero) represent the unstable regimes where algebraic factorization is inhibited.

Table 8: Three Regimes of Stability: Structural Analogy between Geometric Algebras and Atomic
Nuclei

Regime QSNV (Geometric
Algebra)

Nuclear Stability
(Physics)

Principle of Stabil-
ity

I. Perfect
Symmetry p = q Z = N (Light Nuclei) Stability achieved

through equality of
competing factors.

Example G1,1 or G2,2 (Perfect
Factorization)

Carbon-12 (C12) or
Oxygen-16 (O16)

II. Bounded
Asymmetry p ≤ q ≤ 2p or q ≤ p ≤

2q
N > Z (Heavy Nuclei) Stability achieved

through precisely
bounded asymme-
try.

Example G3,4 or G4,3 (Zero
Residue)

Gold-197 (Au197) or
Lead-208 (Pb208)

III. Critical
Instability q > 2p or p > 2q N ≫ Z or Z ≫ N (Ex-

tremes)
Instability results
when asymmetry ex-
ceeds the critical
bound.

Example G1,5 or G5,1 (Anti-Zero
Residue)

Uranium-238 (U238) or
highly unstable iso-
topes
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Figure 4: This plot, called the table of isotopes, or Segrè chart, is a graph of all known nuclides (isotopes) as a
function of their number of protons and neutrons. The nuclides are color-coded by the type of radioactive decay
they undergo. This chart is crucial in nuclear physics for understanding nuclear stability and decay processes.
The third dimension, energy, is not shown. Isospin T ∼= 0 for equal numbers of protons and neutrons, occurs
at the bottom of the valley. The SU(2) energy states, eigenvalues of the Hamiltonian operator, are constructed
from its Lie algebra generators. SO(3) and SU(3) dictate the shell structure of the magic numbers, and the
unitary group U(6) helps model heavy complex isotopes.
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7 Lie Algebras in Quadratic Grassmann-Clifford Algebra
The basis for the classification of Classical Lie Groups of a quadratic form and their Lie Algebras, is explored
in the Quadratic Grassmann-Clifford Algebra G⊥(Vr,s,k). The recursive orthogonalization and Zero Residue
factorization properties simplify and directly reveal their intrinsic geometric structure. The Zero Residue condi-
tion is equivalent to defining the algebra’s structure as an N ×N matrix algebra over R, C, or H, mirroring the
structural isomorphisms that define the classical Lie groups O(N), U(N), and Sp(N) and their Lie Algebras,
[13, Chp.18].

From the perspective of the Universal Null Substrate (UNS), the emergent structure of Lie algebras offer
new tools in the study of the fundamental nature of magic numbers defining the Valley of Stability. Highlighting
the central role of null vectors should not be surprising in light of prominent role they play in the development
of quantum mechanics, relativity [14, 15, 16], and in the ground breaking recent paper by David Hestenes [8].

7.1 Lie Algebra calculations
Let A,B ∈ Gp,q be two multivectors. The symmetric and antisymmetric bracket parts of their geometric product
is important.

Definition 5.
AB =

1

2
(AB +BA) +

1

2
(AB −BA) := A ◦B +A⊗B (26)

where A ◦B is the symmetric part and A⊗B is the antisymmetric part.

Let x,y ∈ G1
p,q be vectors, and B ∈ G2

p,q be a bivector in Gp,q. The important Jacobi identity is respected
for bivectors in geometric algebra. Noting that for vectors B⊗ x ≡ B · x,

B⊗ (x ∧ y) = (B · x) ∧ y + x ∧ (B · y). (27)

Example
For the null vectors c1, c2, c3, c4 ∈ V c

r , consider the Lie algebras generated by the 6 bivectors B := ci ∧ cj . The
following identities are easily established:

• (c1 ∧ c2) · (c1 ∧ c3) =
c1

2 · (c3 − c1) =
1
4 = (c1 ∧ c2)

2.

• (c1 ∧ c2) · (c2 ∧ c3) =
c1

2 · (−c2) = − 1
4 .

• (c1 ∧ c2) · (c3 ∧ c4) =
c1

2 · (c4 − c3) = 0.

• (c1 ∧ c2)⊗ (c1 ∧ c3) = [(c1 ∧ c2) · c1] ∧ c3 + c1 ∧ [(c1 ∧ c2) · c3] = 1
2 [c1 ∧ (c3 − c2)].

• (c1 ∧ c2)⊗ (c3 ∧ c4) = [(c1 ∧ c2) · c3] ∧ c4 + c3 ∧ [(c1 ∧ c2) · c4]
= 1

2 [(c1 − c2) ∧ c4 + c3 ∧ (c1 − c2)] =
1
2 (c1 − c2) ∧ (c4 − c3).

The Lie algebra of the Zero Residue algebra G1,1, the smallest null simplex, is isomorphic to the linear
algebra of 2× 2 matrices with trace zero:

Lie(G1,1) ∼= sl(2,R) ∼= so(1, 2).

This confirms that the Universal Null Substrate contains the seeds of the Lorentz transformations within its
simplest interacting null pair. The bivectors of the Quadratic Grassmann Algebra naturally generate the Lie
algebras of the classical groups: Rotation Generators: For ci, cj ∈ V c

r , the bivector Lij = ci ∧ cj generates
rotations preserving the null cone structure. Boost Generators: The bivector u = e1f1 = 2c2 ∧ c1, generates
the boosts of the Lorentz group SO(1, 1).

The Lie algebras of the Quadratic Spaces of Null Vectors (QSNV) of the Universal Null Substrate (UNS)
are orthogonal. It follows that the Lie bracket of bivectors, generators of the Lie Groups at the origin, chosen
in different substrates are all zero. Consequently, all Lie algebras and Lie groups of any geometric algebra Gp,q

are completely determined by their orthogonal parts.

12



7.2 The Symmetric Group in G1,n

A Null Cone Simplex Ss
N ⊂ G1

1,n, with characteristic Ss
N := s1s2 · · · sN,, is defined by its 1 ≤ N ≤ n + 1 null

vector vertices {s1, . . . sN}, satisfying the condition that for i ̸= j, si · sj = hij > 0. The condition hij > 0, for
distinct i and j, guarantees that the vertices of SN are on the (n+1)-dimensional Minkowski null cone in G1,n,
and that Ss

N is non-degenerate, s1 ∧ · · · ∧ sN ̸= 0.
We now define the Standard Null Simplex Sc

n+1 ⊂ G1
1,n.

Definition 6. The Standard Null Simplex Sc
n+1 := {c1, · · · , cn+1} = V c

n+1 ⊂ G1
1,n, with characteristic

Sc
n+1 := c1c2 · · · cn+1 =

n+1∑
m=0

⟨c1 · · · cn+1⟩m, (28)

is constructed from the null vectors in ci ∈ V c, [16]. The SNS Sc
n+1 is said to be even or odd if n+ 1 is even or

odd, respectively. If the null simplex Sn+1 is even, or odd, then the sum in (28) need only be taken over even
indices 0, 2, . . . , n+ 1, or odd indicies 1, 3, . . . , n+ 1, respectively.

For G1,n = G(V c
n+1) in its locally dual null vector basis (6), its characteristic Sc

n+1 in its natural order is

Sc
n+1 = c1 · · · ci · · · cj · · · cn+1.

The permutation (ij), acting on Sn+1, gives

(ij)Sc
n+1 := c1 · · · cj · · · ci · · · cn+1,

only interchanging ci and cj , leaving the order of the other factors unchanged.

Theorem 2. The 2-cycle (ij) acting on Sc
n+1 gives

(ij)Sc
n+1 = (−1)n(ci − cj)S

c
n+1(ci − cj).

Proof. Note that for any three distinct indices i, j, k, (ci − cj)ck = −ck(ci − cj),

(ci − cj)ci(ci − cj) = −cjci(ci − cj) = cj , and (ci − cj)cj(ci − cj) = cicj(ci − cj) = ci.

The proof is completed by noting that when (ci − cj) is moved through Sc
n+1, it will anti-commute with n

factors and interchange the positions of ci and cj . For example, for n = 2,

(−1)2(c1 − c2)S
c
3(c1 − c2) = (c1 − c2)c1c2c3(c1 − c2) = −(c1 − c2)c1c2(c1 − c2)c3

=
(
(c1 − c2)c1(c1 − c2)

)(
(c1 − c2)c2(c1 − c2)c3

)
= c2c1c3 = (12)Sc

3.

This theorem demonstrates that the discrete symmetric group acting on Sc
n+1 is generated by a set of

discrete reflections within the Geometric Algebra G1,n. The vectors (ci − cj) are the roots of the algebra,
and the bivectors ci ∧ cj generate the continuous transformations of the null cone that preserve the simplex’s
structure. This provides a direct path from the Universal Number Substrate, defined by null vectors, to the
classical Lie groups SO(1,n).

Whereas the Caylley-Hamilton Theorem of a linear transformation is defined by its scalar invariants, the
discrete invariants of the symmetric group acting on Sc

n+1 in G1,n is invariant up to the parity of the permutation
acting on the m-vector parts,

(ij)Sc
n+1 = (−1)n(ci − cj)S

c
n+1(ci − cj) = (−1)n

n+1∑
m=0

(ci − cj)⟨c1 · · · cn+1⟩m(ci − cj).

8 Comprehensive Classification Table
Table 9 below utilizes Lounesto’s notation [11, p.217], where 2K(n) denotes K(n)⊕K(n).
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Table 9: Comprehensive Table of QSNV Algebras (p+ q ≤ 8)

p q Algebra p− q (mod 8) Type Lounesto Notation Classification

0 0 R 0 R R Scalar

1 0 G1,0 1 2R 2R Hyperbolic
0 1 G0,1 7 C C Complex

1 1 G1,1 0 R R(2) Zero Residue
2 0 G2,0 2 R R(2) Euclidean
0 2 G0,2 6 H H Quaternion

2 1 G2,1 1 2R 2R(2) Zero Residue
1 2 G1,2 7 C C(2) Zero Residue
3 0 G3,0 3 C C(2) Pauli
0 3 G0,3 5 2H 2H Split-Bi-Quaternion

2 2 G2,2 0 R R(4) Zero Residue
3 1 G3,1 2 R R(4) Anti-Zero (Majorana)
1 3 G1,3 6 H H(2) Anti-Zero (Spacetime)
4 0 G4,0 4 H H(2) Euclidean
0 4 G0,4 4 H H(2) Quaternion

3 2 G3,2 1 2R 2R(4) Zero Residue
2 3 G2,3 7 C C(4) Zero Residue
4 1 G4,1 3 C C(4) Anti-Zero
1 4 G1,4 5 2H 2H(2) Anti-Zero

3 3 G3,3 0 R R(8) Zero Residue
4 2 G4,2 2 R R(8) Zero Residue
2 4 G2,4 6 H H(4) Zero Residue
5 1 G5,1 4 H H(4) Anti-Zero
1 5 G1,5 4 H H(4) Anti-Zero

4 3 G4,3 1 2R 2R(8) Zero Residue
3 4 G3,4 7 C C(8) Zero Residue
6 1 G6,1 5 2H C(8) Anti-Zero
1 6 G1,6 3 C C(8) Anti-Zero
5 2 G5,2 3 C C(8) Anti-Zero
2 5 G2,5 5 2H 2H(4) Anti-Zero

9 Conclusion and Future Work
The Quadratic Space of Null Vectors (QSNV) offers a substrate-first approach to geometric algebras, inverting
the traditional view that the metric signature is primary [12]. The Universal Null Substrate reveals a recursive
structure that classifies all Gp,q algebras into two distinct regimes, Zero Residue (perfectly factorable into null
simplexes) and Anti-Zero Residue (requiring metric residues). This clarifies the unique position of physical
algebras. Spacetime Algebra G1,3 and the Majorana Algebra G3,1 sit on the boundary of the stability band.
This suggests their role as holographic interfaces, the mathematical boundary where the purely null substrate
of information is projected into the rigid Euclidean geometry of an observer’s 3-dimensional experience. See
further comments in the Appendix.

Table 9 shows that neutral geometric algebras Gp,q, with p = q, characterize the concept of global duality.
In tensor analysis this is equivalent to the concept of a vector and its dual covector. A scalar angle in local
duality becomes secondary to the conformally invariant concept of the direction of a null vector when expressed
in the locally dual bases of the Lorentz geometric algebras G1,n and Gn,1. In the locally dual bases of these
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algebras, the only scalar angles are those whose inner products are the constants 1
2 , − 1

2 , with a 0 angle between
null vectors in the different orthogonal blocks V c

r , V
w
s , and V n

k . The geometric algebras Gn,1 and G1,n have
been widely employed in the Conformal Model, together with ideas from projective geometry, to characterize
properties of points, lines, planes, and circles. Timothy Havel has shown how the Conformal Model of G4,1 can
be beautifully used to generalize Heron’s formula for the area of a planar triangle in terms of the lengths of it
three sides, to the volume of the tetradedron in terms of the areas its faces, and to higher dimensional simplices
[7].

The Zero Residue conditions (p ≤ q ≤ 2p or q ≤ p ≤ 2q) mirror the Bott Periodicity of classical unitary,
orthogonal and symplectic groups. The factorization of high-dimensional algebras into 2× 2 block matrices of
G1,1,G1,2, and G2,1, reduces the computational cost of geometric products to simpler index arithmetic. Raoul
Bott considered networks to be discrete versions of harmonic theory. He viewed the flow of electricity in a
network as a discrete analog to the continuous problems of harmonic analysis and Hodge theory [10, 4].

The QSNV and UNS framework provides a natural algebraic language for the Holographic Principle of
and the Covariant Entropy Bound, and Discrete Max-Focusing [2, 3]. There is another interesting connection.
Though the Deng-Hani-Ma paper is primarily a masterpiece of kinetic theory and PDEs, its relevance to the
“discrete/harmonic" discussion lies in the mathematical tools used to bridge these two worlds. The singular
value and Jordan normal form decompositions of a linear operator become the basic tools of the finite dimen-
sional Hurwitz Matrix Equation, leading to infinite dimensional Hurwitz Stability, the Lyapunov Equation of
a dynamical system, and harmonic analysis [5]. Future work could extend this null-sorting algorithm to the
higher dimensional cases, offering a discrete geometric foundation for representation theory [6].
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A QSNV and the Holographic Principle
The QSNV framework provides a natural algebraic language for the Holographic Principle and the Covariant
Entropy Bound. This appendix explores the primary correspondences proposed between the Null Substrate and
modern gravitational theory, as well as their historical-philosophical precursors in Dante Alighieri’s Paradiso
(1310 AD), and the much earlier (375 BCE) Greek Cave Allegory in Plato’s “The Republic" [19].

A.1 The Null Simplex as a Holographic Pixel
In the Bekenstein-Hawking entropy formula, S = A

4Gℏ , information is discretized into Planck-area units. We
propose that a fundamental null simplex in Vr,s,k represents an Information Pixel. While standard geometry
treats the interior of a volume as having more degrees of freedom than the surface, the Zero Residue Factorization
(ZRF) mirrors the holographic realization that “Bulk" degrees of freedom are strictly limited by the boundary
null-vector configurations.

A.2 Lightsheets and the ZRF Band
Raphael Bousso’s lightsheet L(B) is a 3D volume generated by non-expanding null geodesics orthogonal to a
surface B. The QSNV identifies a “stability band" where p ≤ q ≤ 2p. We hypothesize the following physical
correspondences:

• Zero Residue Algebras: Represent spaces where the information content (the bits) can be perfectly
mapped onto the null substrate without “metric residue." This corresponds to a non-singular holographic
encoding.

• The Anti-Zero Residue Boundary: The case q = 2p represents the “saturated" holographic limit. Be-
yond this point, the algebra requires an irreducible Euclidean core (metric residue), which may correspond
physically to the emergence of massive, non-null particles.

A.3 Dante’s “Punto” as the Null Substrate
In Paradiso XXVIII (41–42), Dante describes the source of the universe: “Da quel punto depende il cielo e tutta
la natura” (From that point depend the heavens and all of nature). In the QSNV context, this punto can be
modeled as the ultimate Null Simplex (p = 1, q = 1).

• Causal Dependency: The verb depende reflects the ZRF’s recursive nature—the complex manifold
(Nature) is algebraically “suspended” from a singular, null-dimensional origin.
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• Information Singularity: Dante’s description of the point as infinitesimal yet containing the entire
power of the universe anticipates the holographic concept that the most fundamental “pixel” governs the
global bulk.

A.4 The Inversion Paradox and Metric Residue
A striking parallel to the Bousso Bound appears in lines 67–75 of Canto XXVIII. Dante observes that while
physical spheres grow in power as they grow in size, the spiritual circles (Angelic Hierarchies) grow in power as
they approach the center.

• The Law of Virtute: Beatrice explains that the ampiezza (physical extension) is a function of the virtute
(algebraic intensity). This mirrors the QSNV requirement that as the purity of the Null Substrate (p) is
diluted, a larger “Metric Residue” (spatial volume) is required to maintain the same information density.

• Algebraic Agreement: The mirabil congruenza (marvelous agreement) Beatrice describes between the
point and the spheres represents the stability of the Recursive Orthogonalization Theorem. Space-
time is stable only if the outward “Bulk” copy remains consistent with the inner “Null” pattern.

A.5 Quantum Focusing and Algebra Stability
The Quantum Focusing Conjecture (QFC) states that the generalized expansion Θ of a lightsheet never increases:
dΘ
dλ ≤ 0. In the QSNV framework, the stability of the recursive process is the algebraic analog to the QFC: if the
null substrate were to “lose focus” (i.e., if the inner product rules became inconsistent), the resulting geometric
algebra would fail to represent a stable physical spacetime.
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